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To my princess and my big mama

Thanks for everything

Purpose: This document is a compilation of notes generated to prepare for the Applied Differential Equa-

tions (ADE) Qualifying Exam at UCLA. I have documented the followings solutions as part of my review

process. These are incomplete and certainly contain typos and errors, for which I apologize in advance.

Much credit is due to Peter Cheng and Zane Li, Jeffrey Hellrung, and Alejandro Canteraro for their excel-

lent notes! Several of my solutions follow in likewise fashion to theirs; however, plenty others are distinct.

I would also like to extend many gracious thanks to Victoria Kala for her aid in producing many of the

solutions to problems from recent years, and also thanks to Bohyun Kim. To anyone that embarks on the

journey of preparing for this exam, I hope these notes prove valuable to you. I also hope you pass the

exam early on in the program (rather than fail twice and be told if you don’t pass next time then you are

out of the program, as was my situation).
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1 Introduction

Many solutions from old exams are contained herein. First we provide some background material that I

found relevant for the solutions. Several example problems are drawn from textbooks, as I believe they

reflect the types of problems that have shown up in the past and may show up in the near future. After

this, over two hundred qual problem solutions are presented. I attempted to make these self-contained, as

if to model what I would hope to write on the actual exam. Consequently, some of the solutions may seem

repetitive.

The primary references we have found useful are as follows. First, the PDE text by Evans is of utmost

value. Particularly, we suggest studying Chapters 2, 3, 4, 5, 6, and 8. We also recommend Chapters 1 and

3 of Bender and Orszag’s text for the Frobenius and asymptotics methods. Chapters 5, 6, and 7 of Stro-

gatz’s text are also useful for the ODE problems (in addition to the similarity solution portion of Chapter 4

of Evans’ text). I have attempted to include as many relevant problems and examples from these as possible.

Remark: Because the Bender and Orzsag portion of the notes has been removed from the online version

of these notes, the links in the document were removed (as part of the process). Kindly email me if you

seek the complete set of notes (with links). 4

1 Last Modified: 4/26/2019
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2 Evans

Chapter 2

Problem 2.1. Write down an explicit formula fo ra function u solving the initial value problem


ut + b ·Du+ cu = 0 in Rn × (0,∞),

u = g on Rn × {t = 0}.
(1)

Here c ∈ R and b ∈ Rn are constants.

Solution:

This is the transport equation with an added cu term. We claim u = g(x − bt)e−ct. Indeed, this gives

u = g on Rn × {t = 0} and

ut + b ·Du+ cu =
(
−b ·Dg(x− bt)e−ct − cg(x− bt)e−ct

)
+ b ·Dg(x− bt)e−ct + cg(x− bt)e−ct = 0. (2)

�
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Problem 2.2 Prove Laplace’s equation ∆u = 0 is rotation invariant; that is, if O is an orthogonal n× n

matrix and we define v(x) := u(Ox) for x ∈ Rn, then ∆v = 0.

Proof:

Set g(x) := Ox so that v(x) = u(g(x)). Then

vxi(x) = Du(g(x)) · gxi(x) =

n∑
j=1

uxj (g(x))∂xi (Ox)j =

n∑
j=1

uxj (g(x))Oji for i = 1, 2, . . . , n, (3)

where

∂xi(Ox)j = ∂xi

n∑
k=1

Ojkxk =

n∑
k=1

Ojkδik = Oji for i = 1, 2, . . . , n. (4)

Differentiating once more yields

vxixi(x) =
n∑
j=1

Oji∂xiu(g(x)) =

n∑
j=1

Oji

n∑
k=1

uxjxk(g(x))Oki. (5)

Note
n∑
i=1

OjiOki =
n∑
i=1

OjiO
T
ik = (OOT )jk = δjk, (6)

where the final equality holds since O is orthogonal. Then

∆v(x) =
n∑
i=1

n∑
j,k=1

OjiOkiuxjxk(g(x)) =
n∑

j,k=1

δjkuxjxk(g(x)) =
n∑
j=1

uxjxj (g(x)) = ∆u(g(x)) = 0. (7)

This completes the proof. �
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Problem 2.3. Modify the proof of the mean-value formulas to show for n ≥ 3 that1

u(0) = −
∫
∂B(0,r)

g dσ +
1

n(n− 2)α(n)

∫
B(0,r)

(
1

|x|n−2
− 1

rn−2

)
f dx, (8)

provided 
−∆u = f in B0(0, r),

u = g on ∂B(0, r).

(9)

Proof:

Assume u is a solution to (9). Then define φ : [0,∞)→ R by

φ(r) := −
∫
∂B(0,r)

u dσ = −
∫
∂B(0,r)

g(y) dσ(y) = −
∫
∂B(0,1)

g(rz) dσ(z). (10)

Then differentiating yields

φ′(r) = −
∫
∂B(0,1)

Dg(rz) · z dσ(z) = −
∫
∂B(0,r)

Dg(y) · y
r

dσ(y) = −
∫
∂B(0,r)

∂u

∂ν
dσ. (11)

Using Green’s formula and (9), we then deduce

φ′(r) =
r

n
−
∫
B(0,r)

∆u(x) dx = − r
n
−
∫
B(0,r)

f(x) dx (12)

By the fundamental theorem of calculus, we see

φ(r)− φ(0) =

∫ r

0
φ′(s) ds =⇒ φ(0) = φ(r)−

∫ r

0
φ′(s) ds, (13)

and so the fact u(0) = φ(0) implies

u(0) = −
∫
∂B(0,r)

u dσ +

∫ r

0

s

n
−
∫
B(0,s)

f(x) dxds. (14)

1The solution here is due to a helpful conversation from Bohyun Kim.
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All that remains is to verify

∫ r

0

s

n
−
∫
B(0,s)

f(x) dxds =
1

n(n− 2)α(n)

∫
B(0,r)

(
1

|x|n−2
− 1

rn−2

)
f dx. (15)

Let ε > 0. Then observe integration by parts yields

∫ r

ε

s

n
−
∫
B(0,s)

f(x) dxds

=

∫ r

ε

1

nα(n)sn−1

∫
B(0,s)

f(x) dx ds

=
1

nα(n)

([
1

(2− n)sn−2

∫
B(0,s)

f(x) dx

]r
s=−ε

−
∫ r

ε

1

(2− n)sn−2

∫
∂B(0,s)

f(y) dσ(y)

)

=
1

n(n− 2)α(n)

 1

εn−2

∫
B(0,ε)

f(x) dx︸ ︷︷ ︸
J(ε)

− 1

rn−2

∫
B(0,r)

f(x) dx+

∫ r

ε

∫
∂B(0,s)

f(y)

sn−2
dσ(y)ds︸ ︷︷ ︸

K(ε)

 ,

(16)

where we let J(ε) and K(ε) be the underbraced quantities. Note

lim
ε→0+

K(ε) =

∫ r

0

∫
∂B(0,s)

f(y)

sn−2
dσ(y)ds =

∫
B(0,r)

f(x)

|x|n−2
dx. (17)

Furthermore,

lim
ε→0+

|J(ε)| = lim
ε→0+

∣∣∣∣∣ 1

εn−2

∫
B(0,ε)

f(x) dx

∣∣∣∣∣
≤ lim

ε→0+

1

εn−2

∫
B(0,ε)

‖f‖L∞(B(0,r)) dx

= lim
ε→0+

1

εn−2
· α(n)εn‖f‖L∞(B(0,r))

= ‖f‖L∞(B(0,r)) · lim
ε→0+

ε2

= 0

(18)

Therefore, taking the limit as ε −→ 0+, (16), (17), and (18) together imply (15) holds, which

completes the proof. �
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Problem 2.4. Give a direct proof that if u ∈ C2(U) ∩ C(U) is harmonic within a bounded open set U ,

then

max
U

u = max
∂U

u. (19)

Proof:

Because U ⊂ Rn is closed and bounded, it is compact. Since u is continuous on the compact set

U , it attains its supremum. Similarly, since ∂U is closed and bounded u attains its supremum on

∂U . Thus the use of max in (19) is well-defined. Now let ε > 0 and set uε := u+ ε|x|2, and note uε

is continuous on U . By way of contradiction, suppose uε attains its maximum at an interior point

z ∈ int(U). This implies

0 ≥ ∆uε(z) =

[
n∑
i=1

∂xixi
(
u(x) + ε|x|2

)]
x=z

= ∆u(z) + 2nε = 2nε > 0. (20)

This implies 0 > 0, a contradiction. Consequently, max
U

uε = max
∂U

uε. Then observe

max
U

u ≤ max
x∈U

(
u(x) + ε|x|2

)
= max

x∈U
uε(x) = max

x∈∂U
uε(x) = max

x∈∂U

(
u(x) + ε|x|2

)
. (21)

Since U is bounded, there is M > 0 such that |x|2 ≤M for all x ∈ U . Thus,

max
U

u ≤ max
x∈∂U

u(x) + ε|x|2 ≤
(

max
∂U

u

)
+ εM. (22)

Letting ε −→ 0, we deduce max
U

u ≤ max
∂U

u. And, because ∂U ⊂ U , max
U

u ≥ max
∂U

u. Combining our

inequalities, we conclude (19) holds. �
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Problem 2.5. We say v ∈ C2(U) is subharmonic if −∆v ≤ 0 in U .2

a) Prove for subharmonic v that

v(x) ≤ −
∫
B(x,r)

v(y) dy ∀ B(x, r) ⊂ U. (23)

b) Prove that therefore max
U

v = max
∂U

v.

c) Let φ : R→ R be smooth and convex. Assume u is harmonic and v := φ(u). Prove v is subharmonic.

d) Prove v := |Du|2 is subharmonic whenever u is harmonic.

Proof:

a) Let B(x, r) ⊂ U . Then define φ : [0,∞)→ R by

φ(r) :=

∫
∂B(x,r)

u(y) dσ(y) =

∫
∂B(0,1)

u(x+ rz) dσ(z). (24)

Then

φ′(r) =

∫
∂B(0,1)

Du(x+ rz) · z dσ(z)

=

∫
∂B(0,1)

∂u

∂ν
(x+ rz) dσ(z)

=

∫
∂B(x,r)

∂u

∂ν
dσ

=
r

n

∫
B(x,r)

∆u dσ

≥ 0.

(25)

This shows φ is monotonically increasing. Whence

v(x) = lim
t→0
−
∫
∂B(x,t)

u dσ = lim
t→0

φ(t) =≤ φ(r) = −
∫
B(x,r)

v(y) dy. (26)

b) Because ∂U ⊂ U , we know

max
x∈U

v(x) ≥ max
x∈∂U

v(x). (27)

2The solution to b) was constructed through reference to stack exchange.
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By way of contradiction, now suppose

max
x∈U

v(x) > max
x∈∂U

v(x). (28)

This implies v attains its maximum at an interior point z ∈ int(U). From a), we know for any

r > 0 such that B(z, r) ⊂ U

v(z) ≤
∫
B(z,r)

v(x) dx =⇒ 0 ≤
∫
B(z,r)

v(x)− v(z) dx, (29)

but note the integrand on the right hand size is nonpositive, which implies v(x) = v(z) for all

x ∈ B(z, r).

Let S = {r > 0 : B(z, r) ⊂ U} and note S is bounded since U is bounded. Moreover, by

definition of s, we know

B(z, s) =
⋃
r∈S

B(z, r) ⊂ U. (30)

Thus v(x) = v(z) for all x ∈ B(z, s). And, because v is continuous on U , it follows that v is

continuous on B(z, s). Whence v(y) = v(z) for all y ∈ ∂B(z, s). We claim ∂B(z, s) ∩ ∂U 6= ∅.

Consequently, there is a point y ∈ ∂B(z, s) ∩ ∂U , which implies there is a point y ∈ ∂U

for which v(y) = v(z), a contradiction to (28). This contradiction together with (27) imply

max
U

v = max
∂U

v, as desired.

All that remains is to verify ∂B(z, s) ∩ ∂U 6= ∅. By way of contradiction, suppose ∂B(z, s) ∩

∂U = ∅, which implies ∂B(z, s) ∩ (Rn\U) = ∅. Thus letting

d := inf{|x− y| : x ∈ B(z, s), y ∈ (Rn\U)} (31)

yields d > 0. Consequently, B(z, s+d/2) and (Rn\U) are disjoint. This implies B(z, s+d/2) ⊂

U and so s+ d/2 ∈ S, contradicting the fact s = supS. The result directly follows.

c) First note v(x) = φ(u) implies

vxi = φ′(u)uxi =⇒ vxixi = φ′′(u)u2
xi + φ′(u)uxixi for i = 1, 2, . . . , n. (32)

8 Last Modified: 4/26/2019
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Thus

∆u =

n∑
i=1

vxixi =

n∑
i=1

φ′′(u)u2
xi + φ′(u)uxixi = φ′′(u)|Du|2 + φ′(u)∆u = φ′′(u)|Du|2 ≥ 0, (33)

using the fact φ′′(u) ≥ 0. This shows −∆v ≤ 0, as desired.

d) Observe uxj is harmonic for j = 1, 2, . . . , n since

∆uxj =
n∑
i=1

uxixixj = ∂xj (∆u) = ∂xj0 = 0. (34)

Then note φ(x) = x2 is convex and so −∆φ(uxi) ≤ 0 for i = 1, 2, . . . , n. Whence

−∆
(
|Du|2

)
= −∆

(
n∑
i=1

u2
xi

)
=

n∑
i=1

−∆φ(uxi) ≤
n∑
i=1

0 = 0. (35)

�
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Problem 2.6. Let U ⊂ Rn be bounded and open. Prove there exists a constant C, depending only on U ,

such that

max
U
|u| ≤ C

(
max
∂U
|g|+ max

U
|f |
)

(36)

whenever u is a smooth solution of 
−∆u = f in U,

u = g on ∂U .

(37)

Proof:

Let λ := max
U
|f |. Then set

v(x) := u+
|x|2

2n
λ (38)

and observe

−∆v = −∆

(
u+
|x|2

2n
λ

)
= −∆u− λ ≤ −∆u− f = 0. (39)

Thus v is subharmonic. By a previous exercise, it follows that max
U

v = max
∂U

v. Thus

max
U
|u| ≤ max

U
|u|+ λ|x|2

2n
= max

U
v = max

∂U
v = max

∂U
|u|+ λ|x|2

2n
. (40)

Because U is bounded, there exists M > 0 such that |x|2 ≤ M for all x ∈ U . Thus taking

C = max{1,M/2n} reveals

max
U
|u| ≤ max

∂U
|u|+ λM

2n
≤ C

(
max
∂U
|u|+ λ

)
= C

(
max
∂U
|g|+ max

U
|f |
)
. (41)

Noting C depends only on U , we see we have obtained the desired result. �
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Problem 2.7. Use Poisson’s formula for the ball to prove for x ∈ B0(0, r)

rn−2 r − |x|
(r + |x|)n−1

u(0) ≤ u(x) ≤ rn−2 r + |x|
(r − |x|)n−1

u(0) (42)

whenever u is positive and harmonic in B0(0, r). This is an explicit form of Harnack’s inequality.

Proof:

First note Poisson’s formula for the ball is is given by

u(x) =
r2 − |x|2

nα(n)r

∫
∂B0(0,r)

g(y)

|x− y|n
dσ(y), (43)

which implies

u(0) =
1

nα(n)rn−1

∫
∂B0(0,r)

g(y) dσ(y). (44)

Now fix any x ∈ B0(0, r). Then for each y ∈ ∂B0(0, r) it holds

|x− y| ≤ |x|+ |y| = |x|+ r and |x− y| ≥ |y| − |x| = r − |x|. (45)

Whence

u(x) ≤ (r + |x|)(r − |x|)
nα(n)r

∫
∂B0(0,r)

g(y)

(r − |x|)n
dσ(y)

= rn−2 r + |x|
(r − |x|)n−1

· 1

nα(n)rn−1

∫
∂B0(0,r)

g(y) dσ(y)

= rn−2 r + |x|
(r − |x|)n−1

u(0).

(46)

In similar fashion, we see

u(x) ≥ (r + |x|)(r − |x|)
nα(n)r

∫
∂B0(0,r)

g(y)

(r + |x|)n
dσ(y)

= rn−2 r − |x|
(r + |x|)n+1

· 1

nα(n)rn−1

∫
∂B0(0,r)

g(y) dσ(y)

= rn−2 r − |x|
(r + |x|)n−1

u(0).

(47)

Combining our results, we obtain the given form of Harnack’s inequality. �

11 Last Modified: 4/26/2019



ADE Qual Notes Heaton

Problem 2.9. Let u be the solution of
∆u = 0 in Rn

+,

u = g on ∂Rn+,

(48)

given by Poisson’s formula for the half-space. Assume g is bounded and g(x) = |x| for x ∈ ∂Rn
+ satisfying

|x| ≤ 1. Show Du is unbounded near x = 0.

Proof:

We verify Du is unbounded near x = 0 as follows. First we claim

lim
λ→0+

∣∣∣∣u(λen)− u(0)

λ

∣∣∣∣ =∞. (49)

Since u is harmonic, u ∈ C∞(Rn
+). By way of contradiction, suppose Du is bounded in some open

ball about the origin, i.e., there is M > 0 such that |Du(x)| ≤ M for all x ∈ Rn
+ ∩ Br(0) for some

r > 0. Then for any λ, ε ∈ (0, r) with λ > ε we see

|u(λen)− u(εen)| =
∣∣∣∣∫ λ

ε
uxn(ten) dt

∣∣∣∣ ≤ ∫ λ

ε
|uxn(ten)| dt ≤M(λ− ε). (50)

From a theorem in Evans text3, we deduce u(εen) −→ u(0) as ε −→ 0+. Consequently,

M ≥ lim
λ→0+

lim
ε→0+

∣∣∣∣u(λen)− u(εen)

λ− ε

∣∣∣∣= lim
λ→0+

∣∣∣∣u(λen)− u(0)

λ− 0

∣∣∣∣ =∞, (51)

a contradiction to the fact M is finite. Thus Du is unbounded near the origin.

All that remains is to verify (49). Using Poisson’s formula for the half-space, we see for λ > 0

u(λen)− u(0)

λ
=
u(λen)

λ
=

1

λ
· 2λ

nα(n)

∫
∂Rn

+

g(y)

|λen − y|n
dy =

2

nα(n)

∫
∂Rn

+

g(y)

(λ2 + |y|2)n/2
dy, (52)

where the final equality holds as the n-th component of y is zero since y ∈ ∂Rn
+. Let J(λ) and

3See Theorem 14iii on page 37.
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K(λ) be the corresponding integrals over R1 = ∂Rn
+∩B(0, 1) and R2 = ∂Rn

+\B(0, 1), respectively,

so that u(λen) = J(λ) +K(λ). The fact g is bounded implies there is B > 0 such that ‖g‖∞ ≤ B,

and so

|K(λ)| ≤
∫
R2

B

(λ2 + |y|2)n/2
dy ≤ B

∫
R2

1

|y|n
dy = BC(n)

∫ ∞
1

1

rn
· rn−2dr = BC(n) <∞. (53)

The first equality follows from using polar coordinates, where C(n) is a scalar dependent only on

n. Next observe

Jλ(x) =
2

nα(n)

∫
R1

|y|
(λ2 + |y|2)n/2

dy

=
2

nα(n)

∫
B̃(0,1)

|y|
(λ2 + |y|2)n/2

dy

=
2

nα(n)

∫
B̃(0,1/λ)

|λz|
λn(1 + |z|2)n/2

λn−1dz

=
2

nα(n)

∫
B̃(0,1/λ)

|z|
(1 + |z|2)n/2

dz

(54)

Note here we use B̃ for balls in Rn−1 and use y in Rn in the first line and Rn−1 from the se-

cond line onward. Employing polar coordinates, for some scalar A(n), dependent only on n, for

λ ∈ (0, 1) the integral becomes

Jλ(x) = A(n)

∫ 1/λ

0

r

(1 + r2)n/2
· rn−2dr

≥ A(n)

∫ 1/λ

1

rn−1

(1 + r2)n/2
dr

≥ A(n)

2n/2

∫ 1/λ

1

rn−1

rn
dr

= −A(n)

2n/2
ln(λ).

(55)

The third line follows since 1 + r2 ≤ 2r2 for r ≥ 1. Consequently,

lim
λ→0+

J(λ) ≥ lim
λ→0+

−A(n)

2n/2
ln(λ) =∞. (56)
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Note since K(λ) is bounded as λ −→ 0+ while J(λ)→∞, compiling our results yields

lim
λ→0+

u(λen)− u(0)

λ
= lim

λ→0+
J(λ) +K(λ) =∞, (57)

as desired. This verifies (49) and completes the proof. �
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Problem 2.10

Proof:

Let U− denote the open hall-ball {x ∈ Rn : |x| < 1, xn < 0}. Observe vxixi is continuous in U+ for

each i ∈ [n] since vxixi = uxixi in U+. Also vxixi is continuous in U− for each i ∈ [n] since −uxixi
and φ(z1, . . . , zn−1, zn) := (z1, . . . , zn−1,−zn) are continuous in U− and the composition vxixi =

−uxixi ◦ φ is continuous. All that remains is to verify vxixi is continuous along ∂U+ ∩ {xn = 0}.

For i ∈ [n− 1] we directly deduce vxixi = uxixi = 0 since u = 0 in this set. For each z ∈ B0(0, 1)

lim
α→0+

vxnxn(z1, . . . , zn−1, α) = lim
α→0+

uxnxn(z1, . . . , zn−1, α) = uxnxn(z1, . . . , zn−1, 0) = 0. (58)

The first equality holds by the definition of v, and the second by the continuity of uxnxn , and the

third since, using the facts uxixi = 0 on ∂U+ ∩ {xn = 0} for i ∈ [n − 1] and u ∈ C2(U+) and u is

harmonic in U+,

0 = lim
α→0+

0 = lim
α→0+

∆u = lim
α→0+

n∑
i=1

uxixi =
n∑
i=1

uxixi(x1, . . . , xn−1, 0) = uxnxn(x1, . . . , xn−1, 0).

(59)

Similarly, we deduce

lim
α→0−

vxnxn(z1, . . . , zn−1, α) = lim
α→0+

(−uxnxn ◦ φ)(z1, . . . , zn−1, α)

= (−uxnxn ◦ φ)(z1, . . . , zn−1, 0)

= −uxnxn(z1, . . . , zn−1, 0)

= 0.

(60)

Since the right and left hand limits exist and are equal, it follows for each z ∈ B0(0, 1)

lim
α→0

vxnxn(z1, . . . , zn−1, α) = 0 = vxnxn(z1, . . . , zn−1, 0), (61)

which implies vxnxn ∈ C2(U), from which we conclude u ∈ C2(U). �
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Problem 2.15. Given g : [0,∞)→ R, with g(0) = 0, derive the formula

u(x, t) =
x√
4π

∫ t

0

1

(t− s)3/2
exp

(
− x2

4(t− s)

)
g(s) ds (62)

for a solution of the initial/boundary-value problem


ut − uxx = 0 in R+ × (0,∞),

u = 0 on R+ × {t = 0},

u = g on {x = 0} × [0,∞).

(63)

Solution:

Define v(x, t) := u(x, t)− g(t). Let us momentarily assume g(t) is differentiable. Then define

f̃(x, t) :=


−g′(t) if x ≥ 0,

g′(t) if x < 0.

(64)

and define the odd reflection ṽ : R× [0,∞) by

ṽ(x, t) :=


v(x, t) if x ≥ 0,

−v(−x, t) if x < 0.

(65)

Then note, for x ≥ 0,

ṽt(x, t)− ṽxx(x, t) = ut(x, t)− uxx(x, t)︸ ︷︷ ︸
=0

−g′(t) = f̃(x, t), (66)

and, for x < 0,

ṽt(x, t)− ṽxx(x, t) = − (vt(−x, t)− vxx(−x, t)) = − (ut(−x, t)− uxx(−x, t))︸ ︷︷ ︸
=0

+g′(t) = f̃(x, t). (67)

Because g(0) = 0, we further see, for x ≥ 0, v(x, 0) = u(x, 0) − g(0) = u(x, 0). This implies ṽ =
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0 on R× {t = 0}. Compiling the previous results, we may write


ṽt − ṽxx = f̃ in R× (0,∞),

ṽ = 0 on R× {t = 0},

ṽ = 0 on {x = 0} × [0,∞).

(68)

For fixed s ∈ (0, t), we see

ṽ(x, t; s) :=

∫ ∞
−∞

Φ(x− ξ, t− s)f(ξ, s) dξ (69)

solves the PDE 
ṽt(·; s)− ṽxx(·; s) = 0 in R× (s,∞),

ṽ(·; s) = f̃(·; s) on R× {t = s},
(70)

where Φ is the funadmental solution to the heat equation:

Φ(x, t) := (4πt)−1/2 exp

(
−x

2

4t

)
. (71)

Duhamels’ principle then asserts

ṽ(x, t) =

∫ t

0
ṽ(x, t; s) ds

=

∫ t

0

∫ ∞
−∞

Φ(x− ξ, t− s)f(ξ, s) dξds

=

∫ t

0
g′(s)

[
−
∫ ∞

0
Φ(x− ξ, t− s) dξ +

∫ 0

−∞
Φ(x− ξ, t− s) dξ

]
ds

=

∫ t

0
g′(s)

[
−
∫ ∞
−∞

Φ(x− ξ, t− s) dξ + 2

∫ 0

−∞
Φ(x− ξ, t− s) dξ

]
ds

= −g(t) + 2

∫ t

0
g′(s)

∫ 0

−∞
Φ(x− ξ, t− s) dξds,

(72)

where we have substituted in the expression for f̃ and note the integral of Φ over R is unity and g(0) = 0.
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Now define

q(s) :=

∫ 0

−∞
Φ(x− ξ, t− s) dξ

=
1√

4π(t− s)

∫ 0

−∞
exp

(
−(x− ξ)2

4(t− s)

)
dξ

=
1√
4π

∫ ∞
x/
√

4(t−s)
exp(−y2) dy,

(73)

where the final equality holds by using the change of variables y = (x− ξ)/
√

4(t− s). This implies

q′(s) =
1√
4π
· − exp

(
− x2√

4(t− s)

)
· −x

2
(4(t− s))−3/2 · −4 = − x

4
√
π(t− s)3/2

exp

(
− x2√

4(t− s)

)
. (74)

Using integration by parts, it follows that

∫ t

0
g′(s)q(s) ds = [gq]t0 −

∫ t

0
q′(s)g(s) ds

= 0− x

4
√
π

∫ t

0
− exp

(
− x2√

4(t− s)

)
g(s)

(t− s)3/2
ds,

(75)

where the boundary terms vanish since g(0) = 0 and

lim
s→t−

q(s) = lim
s→t−

1√
4π

∫ ∞
x/
√

4(t−s)
exp(−y2) dy =

1√
4π

∫ ∞
∞

exp(−y2) dy = 0. (76)

Therefore,

ṽ(x, t) = −g(t) + 2

∫ t

0
g′(s)q(s) ds = −g(t) +

x

2
√
π

∫ t

0
exp

(
− x2√

4(t− s)

)
g(s)

(t− s)3/2
ds, (77)

from which we conclude, for (x, t) ∈ R× (0,∞),

u(x, t) = ṽ(x, t) + g(t) =
x√
4π

∫ t

0
exp

(
− x2√

4(t− s)

)
g(s)

(t− s)3/2
ds, (78)

as desired. Finally, note our final solution makes sense even if g is merely bounded (rather than differen-

tiable). �
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Chapter 3

Remark: The following is an interesting example, with a brief solution sketch provided on page 134 of

the text by Evans. 4

Example. Solve 
ut +

1

2
|Du|2 = 0 in Rn × (0,∞),

u = |x| on Rn × {t = 0}.
(79)

Solution:

The Hamiltonian H for this PDE is H(p) = |p|2/2, for which the Legendre/Fenchel transform is the

Lagrangian

L(v) = H∗(v) = sup
p∈Rn

v · p−H(p) = sup
p∈Rn

v · p− |p|
2

2
. (80)

Differentiating the expression to be minimized reveals the critical p? satisfies the optimality condition

0 = v − p?, and so

L(v) = v · v − |v|
2

2
=
|v|2

2
. (81)

The Hopf-Lax formula then gives

u(x, t) = min
y∈Rn

tL

(
x− y
t

)
+ |y| = min

y∈Rn

|x− y|2

2t
+ |y|. (82)

Differentiating yields the optimality condition for optimal y? to be

0 =
y? − x
t

+
y?

|y?|
=⇒ y? = x− t y

?

|y?|
=⇒ y?

(
1 +

t

|y?|

)
= x, if y? 6= 0. (83)

If |x| > t, then y? 6= 0 and the sign of y? is the same as that of x, and so

y? = (|x| − t) x

|x|
, (84)

which implies

u(x, t) =
t2

2t
+ |x| − t = |x| − t

2
. (85)
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Now suppose |x| ≤ t. The result (83) shows y?/|y?| = ±x/|x| if y? 6= 0. For such a choice, we see

y? = (|x| ∓ t) x
|x|
, (86)

which implies

u(x, t) =
t2

2t
+ (t∓ |x|) =

3t

2
∓ |x| ≥ t

2
. (87)

However, if |x| ≤ t and y? = 0, then

u(x, t) =
|x|2

2t
≤ t

2
. (88)

Because y? is the minimizer, (87) and (88) show y? = 0 must hold when |x| ≤ t. In summary, we conclude

u(x, t) =


|x| − t/2 if |x| > t,

|x|2/2t if |x| ≤ t.
(89)

�
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Example. Solve 
ut +

1

2
|Du|2 = 0 in Rn × (0,∞),

u = −|x| on Rn × {t = 0}.
(90)

Solution:

The Hamiltonian H for this PDE is H(p) = |p|2/2, for which the Legendre/Fenchel transform is the

Lagrangian

L(v) = H∗(v) = sup
p∈Rn

v · p−H(p) = sup
p∈Rn

v · p− |p|
2

2
. (91)

Differentiating the expression to be minimized reveals the critical p? satisfies the optimality condition

0 = v − p?, and so

L(v) = v · v − |v|
2

2
=
|v|2

2
. (92)

The Hopf-Lax formula then gives

u(x, t) = min
y∈Rn

tL

(
x− y
t

)
− |y| = min

y∈Rn

|x− y|2

2t
− |y|. (93)

Differentiating yields the optimality condition for optimal y? to be

0 =
y? − x
t
− y?

|y?|
=⇒ y? = x+ t

y?

|y?|
=⇒ y?

(
1− t

|y?|

)
= x, if y? 6= 0. (94)

This shows y?/|y?| = ±x/|x|. Minimizing the candidate values for u among all possible cases for y? reveals

min


|x|2

2t︸︷︷︸
y?=0

,
t

2
− (|x|+ t)︸ ︷︷ ︸
y?=x+tx/|x|

,
t

2
− (±(|x| − t))︸ ︷︷ ︸
y?=x−tx/|x|

 = min

{
|x|2

2t
, −|x| − t

2
,

3t

2
− |x|, |x| − t

2

}

= −|x| − t

2
,

(95)

from which we conclude y? = 0 and

u(x, t) = −|x| − t

2
. (96)

�
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Problem 3.5a. Solve using characteristics: x1ux1 + x2ux2 = 2u, u(x1, 1) = g(x1).

Solution:

We proceed by using the method of characteristics. Define F (p, z, x) := x · p − 2z. Taking p = Du and

z = u yields F = 0 and gives rise to the system of characteristic ODE:


ẋ(s) = Fp = x, x(0) = (x0

1, 1),

ż(s) = Fp · p = x · p = 2z, z(0) = g(x0
1).

(97)

This implies

(x1, x2) = x(s) = x(0) exp(s) = (x0
1, 1) exp(s) =⇒ x0

1 = x1 exp(−s) =
x1

x2
, (98)

and so

u(x) = z(s) = z(0) exp(2s) = g(x0
1) exp(2s) = g

(
x1

x2

)
(x2)2. (99)

�
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Problem 3.5b. Solve using characteristics: x1ux1 + 2x2ux2 + ux3 = 3u, u(x1, x2, 0) = g(x1, x2).

Solution:

We proceed by using the method of characteristics. Define F (p, z, x) := p ·r−3z, where r(x) := (x1, 2x2, 1).

Taking p = Du and z = u yields F = 0 and gives rise to the system of characteristic ODE:


ẋ(s) = Fp = r, x(0) = (x0

1, x
0
2, 0),

ż(s) = Fp · p = x · p = 3z, z(0) = g(x0
1, x

0
2).

(100)

This implies ẋ3 = 1 and x0
3 = 0. Thus x3 = s and

(x1, x2, x3) = (x0
1 exp(s), x0

2 exp(2s), s) = (x0
1 exp(x3), x0

2 exp(2x3), s), (101)

which implies

(x0
1, x

0
2) = (x1 exp(−x3), x2 exp(−2x3)). (102)

Then

u(x) = z(s) = z(0) exp(2s) = g(x0
1, x

0
2) exp(3s) = g (x1 exp(−x3), x2 exp(−2x3)) exp(3x3). (103)

�
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Problem 3.5c. Solve using characteristics: uux1 + ux2 = 1, u(x1, x1) = x1/2.

Solution:

We proceed by using the method of characteristics. Define F (p, z, x) := p · (z, 1)− 1. Taking p = Du and

z = u yields F = 0 and gives rise to the system of characteristic ODE:


ẋ(s) = Fp = (z, 1), x(0) = (α, α),

ż(s) = Fp · p = x · p = 1, z(0) = α/2.

(104)

This implies

z = s+
α

2
and x2 = s+ α, (105)

and so

s = 2z − x2 and α = 2x2 − 2z. (106)

Then

x1 = α+

∫ s

0
ẋ(τ) dτ

= α+

∫ s

0
τ +

α

2
dτ

= α+
s2

2
+
αs

2

= (2x2 − 2z) +
4z2 − 4zx2 + x2

2

2
+ (x2 − z)(2z − x2)

= 2x2 −
x2

2

2
+ z(x2 − 2),

(107)

which yields

u(x) = z(s) =
x1 − 2x1 + x2

2/2

x2 − 2
. (108)

�
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Problem 3.17. Show that4

u(x, t) :=


−2

3

(
t+
√

3x+ t2
)

if 4x+ t2 > 0,

0 if 4x+ t2 < 0

(109)

is an (unbounded) entropy solution of ut + (u2/2)x = 0.

Solution:

We proceed in the following manner. First we show u is a smooth solution to the PDE to the left and right

of the shock curve 4x + t2 = 0. Then we show the shock curve satisfies the Rankine-Hugoniot condition.

These two facts prove u is a weak solution to the PDE. Lastly, we must verify the entropy condition holds.

For 4x+ t2 > 0, observe

ut = −2

3

(
1 +

1

2

(
3x+ t2

)−1/2 · 2t
)

= −2

3

(
1 + t

(
3x+ t2

)−1/2
)
, (110)

and

ux = −2

3

(
0 +

1

2

(
3x+ t2

)−1/2 · 3
)

= −
(
3x+ t2

)−1/2
, (111)

which imply

uux = −2

3

(
t+
(
3x+ t2

)1/2)(− (3x+ t2
)−1/2

)
=

2

3

(
t
(
3x+ t2

)−1/2 − 1
)

= −ut. (112)

Thus,

ut +

(
u2

2

)
x

= ut + uux = 0 if 4x+ t2 > 0. (113)

Additionally, we see ut + uux = 0 if 4x+ t2 < 0 since the derivative of 0 is 0.

Let f(u) = u2/2. The RH condition is that along a shock, parametrized by (x(t), t), we have

σ := ẋ(t) =
f(u`)− f(ur)

u` − ur
=

0− u2
r/2

0− ur
=
ur
2
, (114)

4This showed up as S13.8.
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where u` and ur are the limiting values of u to the left and right of the shock, respectively. Because

ur = lim
x→(−t2/4)+

u(x, t) = −2

3

(
t+

(
3 · −t

2

4
+ t2

)1/2
)

= −2

3

(
t+

t

2

)
= −t, (115)

we deduce σ = −t/2. This implies, with the fact x(0) = 0,

x(t) =

∫ t

0
ur dτ =

∫ t

0
−τ

2
dτ = − t

2

4
=⇒ 4x+ t2 = 0, (116)

as desired. Hence u is a weak solution of the PDE. Then observe f ′(u) = u and

f ′(u`) = 0 > σ = − t
2
> −t = f ′(ur), (117)

from which it follows that the entropy condition is satisfied. This completes the proof. �
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Chapter 6

Problem 6.1. Consider Laplace’s equation with the potential function c:

−∆u+ cu = 0, (118)

and the divergence structure equation:

− div (aDv) = 0, (119)

where the function a is positive.

a) Show that if u solves (118) and w > 0 also solves (118), then v := u/w solves (119) for a := w2.

b) Conversely, show that if v solves (119), then u := va1/2 solves (118) for some potential c.

Solution:

a) Observe

vxi =
uxiw − wxiu

w2
, for i = 1, 2, . . . , n. (120)

Then

div(aDv) =

n∑
i=1

∂xi
(
w2vxi

)
=

n∑
i=1

∂xi (uxiw − wxiu) =

n∑
i=1

uxixiw − wxixiu. (121)

Rewriting this in terms of the Laplacian operator reveals

div(aDv) =
n∑
i=1

uxixiw − wxixiu = w∆u− u∆w = w(cu)− u(cw) = 0, (122)

and the result follows.

b) Observe

∆u =

n∑
i=1

∂xixi

[
va1/2

]
=

n∑
i=1

∂xi

[ axiv
2a1/2

+ vxia
1/2
]

=

n∑
i=1

− axi
4a3/2

[axiv] +
1

2a1/2
[axixiv + axivxi ] +

axivxi
2a1/2

+ a1/2vxixi

= va1/2

[
−|Da|

2

4a2
+

∆a

2a

]
+ a−1/2 [Da ·Dv + a∆v] .

(123)
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Additionally,

0 = div(aDv) =

n∑
i=1

∂xi (avxi) =

n∑
i=1

axivxi + avxixi = Da ·Dv + a∆v. (124)

Defining

c := −
[
−|Da|

2

4a2
+

∆a

2a

]
(125)

and utilizing (124), we see (123) becomes

∆u = u(−c) + a−1/2 [Da ·Dv + a∆v] = −cu, (126)

and the proof is complete.

�
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Problem 6.2. Let

Lu = −
n∑

i,j=1

(aijuxi)xj + cu. (127)

Prove there exists a constant µ > 0 such that the corresponding bilinear form B[·, ·] satisfies the hypotheses

of the Lax-Milgram theorem, provided

c(x) ≥ −µ for all x ∈ U . (128)

Solution:

Let H := H1
0 (U). The associated bilinear form B[u, v] is given by

B[u, v] :=

∫
U

n∑
i,j=1

aijuxivxj + cuv dx =

∫
U
〈ADu,Dv〉+ cuv dx. (129)

We seek to show B is bounded and coercive. Boundedness follows since

|B[u, v]| ≤
∫
U
‖ADu‖‖Dv‖+ c|u||v| dx

≤ ‖|A|‖L∞(U)‖|Du||Dv|‖L1(U) + c‖uv‖L1(U)

≤ C1‖Du‖L2(U)‖Dv‖L2(U) + ‖c‖L∞(U)‖u‖L2(U)‖v‖L2(U)

≤
[
C1 + ‖c‖L∞(U)

]
‖u‖H‖v‖H ,

(130)

where C1 := ‖|A|‖L∞(U), |A| denotes the induced Euclidean norm of A(x) in U , and we have made

use of Hölder’s inequality. Poincaré’s inequality asserts there exists C2 > 0, dependent only on U , such

that

‖u‖2L2(U) ≤ C2‖Du‖2L2(U), for all u ∈ H. (131)

And, because we assume A is uniformly elliptic, there exists θ > 0 such that

〈Aξ, ξ〉 ≥ θ|ξ|2, for all ξ ∈ Rn. (132)
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Assuming (128) holds with µ < C2/θ, our combined results imply

B[u, u] =

∫
U
〈ADu,Du〉+ cu2 dx≥ θ‖Du‖2L2(U) − µ‖u‖

2
L2(U) ≥ [θ − µC2] ‖Du‖2L2(U). (133)

However,

‖Du‖2L2(U) =
1

2

[
‖Du‖2L2(U) + ‖Du‖2L2(U)

]
≥ min{C2, 1}

2

[
‖u‖2L2(U) + ‖Du‖2L2(U)

]
=

min{C2, 1}
2

‖u‖2H , (134)

and so

B[u, u] ≥ [θ − µC2] · min{C2, 1}
2

· ‖u‖2H , (135)

where we note the leading scalar is positive, by our choice of µ. This proves B is coercive, and we are done.

�
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Problem 6.3. A function H2
0 (U) is a weak solution of this boundary-value problem for the biharmonic

equation 
∆2u = f in U ,

u = un = 0 on ∂U ,

(136)

provided ∫
U

∆u∆v dx =

∫
U
fv dx, for all v ∈ H2

0 (U). (137)

Given f ∈ L2(U), prove that there exists a unique weak solution of (136).

Solution:

Set H := H2
0 (U), let u ∈ H2

0 (U), and let ε > 0 be given. Since H is the closure of C∞c (U) in H2(U), there

exists w ∈ C∞c (U) ∩H2(U) such that

‖u− w‖H < ε. (138)

Integrating by parts, we see

‖∆v‖2L2(U) =

n∑
i,j=1

∫
U
vxixivxjxj dx =

n∑
i,j=1

∫
U
−vxixixjvxj dx =

n∑
i,j=1

∫
U
v2
xixj dx = ‖D2v‖2L2(U), (139)

where the boundary terms vanish since v has compact support. Together with the triangle inequality, this

implies ∣∣‖D2u‖L2(U) − ‖∆u‖L2(U)

∣∣ ≤ ∣∣‖D2(u− v)‖L2(U) + ‖D2v‖L2(U) − ‖∆u‖L2(U)

∣∣
≤ ‖D2(u− v)‖L2(U) +

∣∣‖D2v‖L2(U) − ‖∆u‖L2(U)

∣∣
≤ ε+

∣∣‖∆v‖L2(U) − ‖∆u‖L2(U)

∣∣
≤ ε+ ‖∆(v − u)‖L2(U)

≤ 2ε,

(140)

where the fourth line is an application of the reverse triangle inequality. Since ε was arbitrary, letting

ε −→ 0+ reveals

‖D2u‖L2(U) = ‖∆u‖L2(U). (141)

Since u was chosen arbitrarily, this result holds for all u ∈ H. Now define the bilinear form B : H×H → R
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and the linear form ` : H → R via

B[u, v] :=

∫
U

∆u∆v dx and `(v) :=

∫
U
fv dx. (142)

We claim the Lax-Milgram theorem asserts there exists a unique u ∈ H such that

B[u, v] = `(v), for all v ∈ H, (143)

from which the result follows.

All that remains is to verify the assumptions of the Lax-Milgram theorem hold. Namely, we must show `

and B are bounded and B is coercive. Observe ` and B are bounded since, for all u, v ∈ H,

|`(v)| ≤ ‖fv‖L1(U) ≤ ‖f‖L2(U)‖v‖L2(U) ≤ ‖f‖L2(U)‖v‖H , (144)

and

|B[u, v]| ≤ ‖∆u∆v‖L1(U) ≤ ‖∆u‖L2(U)‖∆v‖L2(U) ≤ ‖u‖H‖v‖H . (145)

Additionally, by Poincaré’s inequality, there exists C1 > 0, dependent only upon U , such that

‖u‖2L2(U) ≤ C1‖Du‖2L2(U), for all u ∈ H1
0 (U). (146)

However, since uxi ∈ H1
0 (U) for each index i, it follows from (146) that there exists C2 > 0 such that

‖Du‖2L2(U) ≤ C2‖D2u‖L2(U), for all u ∈ H. (147)

Combining (141), (146), and (147), we see

B[u, u] = ‖∆u‖2L2(U)

= ‖D2u‖2L2(U)

≥ 1

3

[
1

C1 · C2
‖u‖2L2(U) +

1

C2
‖Du‖2L2(U) + ‖D2u‖2L2(U)

]
≥ 1

3
min{1/(C1 · C2), 1/C2, 1}‖u‖2H ,

(148)

from which we deduce B is coercive. �
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Problem 6.4. Assume U is connected. A function u ∈ H1(U) is a weak solution of Neumann’s problem


−∆u = f in U ,

un = 0 on ∂U,

(149)

if ∫
U
Du ·Dv dx =

∫
U
fv dx, for all v ∈ H1(U). (150)

Suppose f ∈ L2(U). Prove (149) has a weak solution if and only if

∫
U
f dx = 0. (151)

Solution:

Suppose (149) has a weak solution u?. Let v be the constant function with value unity in U . Since U is

bounded, v ∈ H1(U). Thus, Dv = 0 in U and

∫
U
f dx =

∫
U
fv dx =

∫
U
Du? ·Dv dx =

∫
U
Du? · 0 dx = 0. (152)

Conversely, suppose (151) holds. Set H := {v ∈ H1(U) : v dx = 0}, where we set

v :=

∫
U
v dx. (153)

Note H is a closed subspace of H1(U). Then define the bilinear form B : H ×H → R and ` : H → R by

B[u, v] :=

∫
U
Du ·Dv dx and `(v) :=

∫
U
fv dx. (154)

We claim B is bounded and coercive and ` is bounded. Thus, the Lax-Milgram theorem asserts there exists

a unique u? ∈ H such that

B[u?, v] = `(v), for all v ∈ H. (155)

Therefore, for all v ∈ H1(U),

`(v) = `(v − v) + `(v) = B[u?, v − v] + 0 = B[u?, v]−B[u?, v] = B[u?, v], (156)
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where the second equality holds since (v − v) ∈ H and (151) holds, and the final equality holds since

Dv = 0. This proves u? is a weak solution of the PDE.

All that remains is to verify our claims. Observe B and ` are bounded since, for all u, v ∈ H,

|`(v)| ≤ ‖fv‖L1(U) ≤ ‖f‖L2(U)‖v‖L2(U) ≤ ‖f‖L2(U)‖v‖H , (157)

and

|B[u, v]| ≤ ‖Du ·Dv‖L1(U) ≤ ‖Du‖L2(U)‖Dv‖L2(U) ≤ ‖u‖H‖v‖H . (158)

We say B is coercive provided there exists β > 0 such that

β‖u‖2H ≤ B[u, u], for all u ∈ H. (159)

By way of contradiction, suppose this is not the case. This implies there exists a sequence of nonzero

functions {uk} ⊂ H such that

B[uk, uk] ≤ 1

k
· ‖uk‖2H . (160)

Define vk := uk/‖uk‖. Then ‖vk‖ = 1 for all k ∈ N and

lim
k→∞

‖Dvk‖2L2(U) = lim
k→∞

B[vk, vk] ≤ lim
k→∞

1

k
= 0. (161)

Since the sequence {vk} is bounded, the Rellich-Kondrachov compactness theorem asserts there exists a

subsequence {vnk} ⊆ {vk} and v? ∈ L2(U) such that

lim
k→∞

‖vnk − v?‖L2(U) = 0. (162)

Letting α be any multi-index with |α| = 1, we see, for each φ ∈ C∞c (U),

lim
k→∞

∣∣∣∣∫
U

vnk∂αφ dx

∣∣∣∣ = lim
k→∞

∣∣∣∣−∫
U

∂αvnkφ dx

∣∣∣∣ ≤ lim
k→∞

‖∂αvnkφ‖L1(U) ≤ lim
k→∞

‖Dvnk‖L2(U)‖φ‖L2(U) = 0, (163)

where we have utilized (161) and Hölder’s inequality. Additionally, (162) and Hölder’s inequality imply

lim
k→∞

∣∣∣∣∫
U

(v? − vnk)∂αφ dx

∣∣∣∣ ≤ lim
k→∞

‖(v? − vnk)∂αφ‖L1(U) ≤ lim
k→∞

‖v? − vnk‖L2(u)‖∂αφ‖L2(U) = 0. (164)
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Together, these facts reveal

∫
U
v?∂αφ dx = lim

k→∞

∫
U

(v? − vnk + vnk)∂αφ dx = lim
k→∞

∫
U

(v? − vnk)∂αφ dx+

∫
U
vnk∂αφ dx = 0. (165)

Since α was an arbitrary multi-index with |α| = 1 and φ was arbitrary, this implies v? has a weak derivative

in U and Dv? = 0 a.e. in U . Because U is also connected, v? = C a.e. in U for some C ∈ R. However, by

the definition of H,

0 = lim
k→∞

∫
U
vnk dx = lim

k→∞

∫
U
v? dx+

∫
U
vnk − v? dx =

∫
U
v? dx = C|U | =⇒ C = 0. (166)

Therefore, v? = 0 a.e. in U and

1 = lim
k→∞

‖vnk‖2H = lim
k→∞

‖vnk‖2L2(U) + ‖Dvnk‖2L2(U) = lim
k→∞

‖vnk − v?‖2L2(U) + ‖Dvnk‖2L2(U) = 0, (167)

a contradiction. Consequently, B is coercive and the proof is complete. �
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Problem 6.5. Explain how to define u ∈ H1(U) to be a weak solution of Poisson’s equation with Robin

boundary conditions: 
−∆u = f in U ,

u+
∂u

∂ν
= 0 on ∂U .

(168)

Discuss the existence and uniqueness of a weak solution for a given f ∈ L2(U).

Solution:

Let us momentarily assume u is a smooth solution to the PDE. For each test function v ∈ C∞c (U), we see

0 =

∫
U

(−∆u− f) v dx =

∫
U
Du ·Dv − fv dx−

∫
∂U

∂u

∂ν
v dσ =

∫
U
Du ·Dv − fv dx+

∫
∂U
uv dσ. (169)

The final expression makes sense even if u and v are merely in H := H1(U), evaluating the boundary terms

in the trace sense. Consequently, we say u is a weak solution of the PDE provided

B[u, v] = `(v), for all v ∈ H, (170)

where the bilinear form B : H ×H → R and the linear form ` : H → R are defined by

B[u, v] :=

∫
U
Du ·Dv dx+

∫
∂U
uv dσ and `(v) :=

∫
U
fv dx. (171)

Suppose f ∈ L2(U). We claim B is bounded and coercive and ` is bounded, from which the Lax-Milgram

theorem asserts there exists a unique weak solution u? to (170).

All that remains is to verify our three claims. First note ` is bounded since

|`(v)| ≤ ‖fv‖L1(U) ≤ ‖f‖L2(U)‖v‖L2(U) ≤ ‖f‖L2(U)‖v‖H , for all v ∈ H. (172)

The first inequality follows from the triangle inequality and the second inequality is an application of

Hölder’s ienquality. Similarly, B is bounded since, by application of the trace theorem, there exists C > 0
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such that

|B[u, v]| ≤ ‖Du ·Dv‖L1(U) + ‖uv‖L1(U)

≤ ‖Du‖L2(U)‖Dv‖L2(U) + C‖uv‖L1(U)

≤ ‖u‖H‖v‖H + C‖u‖L2(U)‖v‖L2(U)

≤ (1 + C)‖u‖H‖v‖H , for all u, v ∈ H.

(173)

The form B is coercive provided there exists β > 0 such that

B[u, u] ≥ β‖u‖2H , for all u ∈ H. (174)

By way of contradiction, suppose this is not the case. This implies there exists a nonzero sequence {uk} ⊂ H

such that

B[uk, uk] ≤ 1

k
‖uk‖2H , for all k ∈ N. (175)

Since each uk is nonzero, we may define the sequence {vk} such that vk := uk/‖uk‖H , for all k ∈ N. Then

lim
k→∞

‖Dvk‖2L2(U) + ‖vk‖2L2(∂U) = lim
k→∞

B[vk, vk] ≤ lim
k→∞

1

k
= 0. (176)

Because the sequence {vk} is bounded, the Rellich-Kondrachov compactness embedding theorem asserts

there exists v? ∈ L2(U) and a subsequence {vnk} ⊆ {vk} such that

lim
k→∞

‖vnk − v?‖L2(U) = 0. (177)

Now let α be any multi-index with |α| = 1 and let φ ∈ C∞c (U). Then observe

lim
k→∞

∣∣∣∣∫
U
vnk∂αφ dx

∣∣∣∣ = lim
k→∞

∣∣∣∣−∫
U
φ∂αvnk dx

∣∣∣∣ ≤ lim
k→∞

‖φ∂αvnk‖L1(U) ≤ lim
k→∞

‖φ‖L2(U)‖Dvnk‖L2(U) = 0,

(178)

where the final equality follows from (176). Similarly,

lim
k→∞

∣∣∣∣∫
U

(v? − vnk)∂αφ dx

∣∣∣∣ ≤ lim
k→∞

‖(v? − vnk)∂αφ‖L1(U) ≤ lim
k→∞

‖v? − vnk‖L2(U)‖∂αφ‖L2(U) = 0. (179)
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Together, these facts reveal

∫
U
v?∂αφ dx = lim

k→∞

∫
U

(v? − vnk + vnk)∂αφ dx = lim
k→∞

∫
U

(v? − vnk)∂α dx+

∫
U
vnk∂αφ dx = 0. (180)

Because this holds for an arbitrary multi-index α with |α| = 1 and an arbitrary φ ∈ C∞c (U), we deduce v?

has a weak derivative and Dv? = 0 a.e. in U , and so v? is piecewise constant. Moreover,

‖v?‖L2(∂U) ≤ lim
k→∞

‖v? − vnk + vnk‖L2(∂U)

≤ lim
k→∞

‖v? − vnk‖L2(∂U) + ‖vnk‖L2(∂U)

≤ lim
k→∞

C‖v? − vnk‖L2(U) + ‖vnk‖L2(∂U)

= 0,

(181)

which reveals v? = 0 a.e. in U . Consequently,

1 = lim
k→∞

‖vnk‖2H = lim
k→∞

‖vnk‖2L2(U) + ‖Dvnk‖2L2U = lim
k→∞

‖vnk − v?‖2L2(U) + ‖Dvnk‖2L2U = 0, (182)

which implies 1 = 0, a contradiction. This shows B is, in fact, coercive, and the proof is complete. �
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Problem 6.6. Suppose U is connected and ∂U consists of two disjoint, closed sets Γ1 and Γ2. Define

what it measn for u to be a weak solution of Poisson’s equation with mixed Dirichlet-Neumann boundary

conditions: 
−∆u = f in U ,

u = 0 on Γ1,

un = 0 on Γ2.

(183)

Discuss the existence and uniqueness of solutions.

Solution:

Let us momentarily assume u is a smooth solution to the PDE. Set H := {w ∈ H1(U) : w|Γ1
= 0} and

observe H is a closed subspace of the Hilbert space H1(U). And, for all v ∈ H,

0 =

∫
U

(∆u+ f)v dx =

∫
U
−Du ·Dv + fv dx−

∫
∂U
v
∂u

∂n
dσ

=

∫
U
−Du ·Dv + fv dx−

∫
Γ1

v
∂u

∂n
dσ −

∫
Γ2

v
∂u

∂n
dσ

=

∫
U
−Du ·Dv + fv dx,

(184)

where the first boundary term vanishes due to the fact v = 0 on Γ1 in the trace sense and the second

boundary term vanishes since u solves the PDE. The final line makes sense even if u is merely in H1(U).

Consequently, we say u? ∈ H is a weak solution to the PDE provided

B[u?, v] = `(v), for all v ∈ H, (185)

where we define the bilinear form B : H ×H → R and the lienar form ` : H → R by

B[u, v] :=

∫
U
Du ·Dv dx and `(v) :=

∫
U
fv dx. (186)

We claim B is coercive and bounded and ` is bounded, from which the Lax-Milgram theorem asserts there

exists a unique u? ∈ H such that (185) holds.
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All that remains are to verify our claims. Observe ` and B are bounded since, for all u, v ∈ H,

|`(v)| ≤ ‖fv‖L1(U) ≤ ‖f‖L2(U)‖v‖L2(U) ≤ ‖f‖L2(U)‖v‖H , (187)

and

|B[u, v]| ≤ ‖Du ·Dv‖L1(U) ≤ ‖Du‖L2(U)‖Dv‖L2(U) ≤ ‖u‖H‖v‖H , (188)

where we have made use of Hölder’s ienquality and the definition of the norm ‖ · ‖H induced from H1(U).

The functional B is coercive provided there exists β > 0 such that

β‖u‖2H ≤ B[u, u], for all u ∈ H. (189)

By way of contradiction, suppose this is not the case. Then there exists a nonzero sequence of functions

{uk}k∈N such that

B[u, u] ≤ 1

k
· ‖u‖2H , for all k ∈ N. (190)

Setting vk := uk/‖uk‖H yields ‖vk‖H = 1 and

‖Dvk‖L2(U) = B[vk, vk] ≤ 1

k
, for all k ∈ N. (191)

Furthermore, because {vk} is bounded, the Rellich-Kondrachov compactness theorem asserts there exists

v? ∈ L2(U) and a subsequence {vnk} ⊆ {vk} such that

lim
k→∞

‖vnk − v?‖L2(U) = 0. (192)

Let α be any multi-index with |α| = 1 and φ ∈ C∞c (U). Then (192) implies

lim
k→∞

∣∣∣∣∫
U

(v? − vnk)∂αφ dx

∣∣∣∣ ≤ lim
k→∞

‖(v? − vnk)∂αφ‖L1(U) ≤ lim
k→∞

‖v? − vnk‖L2(U)‖∂αφ‖L2(U) = 0. (193)

And, by (191),

lim
k→∞

∣∣∣∣∫
U
vnk∂αφ dx

∣∣∣∣ = lim
k→∞

∣∣∣∣−∫
U
φ∂αvnk dx

∣∣∣∣ ≤ lim
k→∞

‖φ∂αvnk‖L1(U) ≤ lim
k→∞

‖φ‖L2(U)‖Dvnk‖L2(U) = 0.

(194)
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Consequently,

∫
U
v?∂α dx = lim

k→∞

∫
U

(v? − vnk + vnk)∂αφ dx = lim
k→∞

∫
U

(v? − vnk)∂αφ dx−
∫
U
vnk∂αφ dx = 0, (195)

which implies v? has a weak derivative Dv? and Dv? = 0 a.e. in U . Since U is connected, it further follows

that there exists C ∈ R such that v = c a.e. in U . However, since vΓ1 = 0 in the trace sense and the

measure of Γ1 is positive (i.e., |Γ1| > 0), it follows that c = 0. Whence v? = 0. Therefore,

1 = lim
k→∞

‖vnk‖2H = lim
k→∞

‖vnk‖2L2(U) + ‖Dvnk‖2L2(U) = lim
k→∞

‖vnk − v?‖2L2(U) + ‖Dvnk‖2L2(U) = 0, (196)

where the final equality holds by our previous results. However, this shows 1 = 0, a contradiction. Thus,

B is coercive and the result follows. �
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Strogatz

Chapter 5

Problem 5.1.1. Consider the harmonic oscillator ẋ = v and v̇ = −ω2x.

a) Show the orbits are given by ellipses ω2x2 + v2 = C, where C is a nonnegative constant.

b) Show this condition is equivalent to the conservation of energy.

Solution:

a) Observe
dx

dv
=
ẋ

v̇
=

v

−ω2x
=⇒ −ω2x dx = v dv. (197)

Integrating reveals there exists α ∈ R such that, for all times,

− ω2x2

2
=
v2

2
+ α =⇒ C = 2α = ω2x2 + v2, (198)

where we define C := 2α. Since the right hand side above is nonnegative as each quantity is squared,

C is also nonnegative. This equation is the form of an ellipse.

b) Define the energy

e(t) := ω2x2 + v2. (199)

Then

ė(t) = 2ω2xẋ+ 2vv̇ = 2ω2xv̇ + 2v
[
−ω2x

]
= 0, (200)

which shows e(t) is constant in time, i.e.,

e(t) = e(0), for all t ∈ [0,∞). (201)

Taking C = e(0), we see (198) and (201) are identical, from which the result follows.

�
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Problem 5.1.2. Consider the system ẋ = ax and ẏ = −y, where a < −1. Show all trajectories becomes

parallel to the y-direction as t −→∞ and parallel to the x-direction as t −→ −∞.

Solution:

Consider any trajectory in the system, parameterized by (x(t), y(t)), that does not originate along a null-

cline. This implies (x0, y0) := (x(0), y(0)) satisfies x0 6= 0 and y0 6= 0 since the null-clines are x = 0 and

y = 0. We seek to show

lim
t→∞

dy

dx
= ±∞ and lim

t→−∞

dy

dx
= 0. (202)

Observe we may write

x = x0e
at and y = y0e

−t. (203)

Differentiating reveals
dy

dx
=
ẏ

ẋ
=
−y0e

−t

ax0eat
= − y0

x0
e(−1−a)t = − y0

x0
ebt, (204)

where we note b := −1− a > 0, by hypothesis. Thus,

lim
t→∞

dy

dx
= lim

t→∞
− y0

x0
ebt = − y0

x0
lim
t→∞

ebt︸ ︷︷ ︸
=∞

= ±∞, (205)

as desired. Similarly,

lim
t→−∞

dy

dx
= lim

t→−∞
− y0

x0
ebt = − y0

x0
lim

t→−∞
ebt︸ ︷︷ ︸

=0

= 0. (206)

This verifies (202), and we are done. �

Remark: We presume in the previous example that (x0, y0) 6= (x0, 0). Otherwise, dy/dx = 0 for all time,

and the result would not hold. 4
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Problem 5.1.10. Consider a fixed point x? of a system ẋ = f(x). We say x? is attracting if there is a δ > 0

such that limt→∞ x(t) = x? whenever ‖x(0)− x?‖ < δ. In other words, any trajectory that starts within a

distance δ of x? is guaranteed to converge to x? eventually. In contrast, Liapunov stability requires that

nearby trajectories remain close for all time. We say that x? is Liapunov stable if for each ε > 0 there is a

δ > 0 such that ‖x(t)−x?‖ < ε whenever t ≥ 0 and ‖x(0)−x?‖ < δ. Thus, trajectories that start within δ

of x? remain within ε of x? for all positive time. Finally, x? is asymptotically stable if it is both attracting

and Liapunov stable.

For each of the following systems, decide whether the origin is attracting, Liapunov stable, asymptotically

stable, or none of the above.

a) ẋ = y, ẏ = −4x.

b) ẋ = 2y, ẏ = x.

c) ẋ = 0, ẏ = x.

d) ẋ = 0, ẏ = −y.

e) ẋ = −x, ẏ = −5y.

f) ẋ = x, ẏ = y.

Solution:

a) Observe

ẍ+ 4x = ẏ + 4x = 0, (207)

which implies x and y are of the form

x = a sin(2t) + b cos(2t) =⇒ y = 2a cos(2t)− 2b sin(2t), (208)

for some a, b ∈ R. In particular, we see

‖(x(0), y(0))‖2 = 4a2 + b2. (209)
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Then, for all times t,

‖(x, y)‖2 = [a sin(2t) + b cos(2t)]2 + 4 [a cos(2t)− b sin(2t)]2

≤ [|a|+ |b|]2 + 4[|a|+ |b|]2

= 5
[
a2 + b2 + 2|a||b|

]
≤ 10

[
a2 + b2

]
≤ 10

[
4a2 + b2

]
.

(210)

Let ε > 0 be given. Taking δ = ε/
√

10, the above result reveals if

‖(x(0), y(0))‖ < δ =⇒ ‖(x, y)‖ ≤
√

10‖(x(0), y(0))‖ < ε, (211)

from which we conclude (0, 0) is Liapunov stable. Note (0, 0) is not attracting since x and y are

periodic.

b) Let z = (x, y) and observe ż = Az, where

A =

 0 2

1 0

 , (212)

which has eigenvalues λ = ±
√

2. Thus, the origin forms a saddle and, thus, is neither Liapunov stable

nor attracting.

This may also be shown as follows. Observe

ẍ = ẏ = x =⇒ x = aet + be−t =⇒ y = aet− be−t =⇒ z = aet

 1

1

+ be−t

 1

−1

 , (213)

for some scalars a, b ∈ R. This implies, for each point originating along the line y = x, we have b = 0,

a 6= 0, and

lim
t→∞
‖z(t)‖ = lim

t→∞
|a|et
√

2 = +∞. (214)

Whence the origin is neither Liapunov stable nor attracting.

c) Let (x, y) be any trajectory. From the ODE, ẋ = 0 implies there exists a ∈ R such that x(t) = a for
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all time. This implies ẏ = a, and so y = at + b, for some b ∈ R. For each trajectory originating at

(a, 0), we see

lim
t→∞
‖(x, y)‖ = lim

t→∞

√
a2 + (at)2 = |a| lim

t→∞

√
1 + t2 = +∞, (215)

from which we conclude the origin is neither attracting nor Liapunov stable.

d) We claim the origin is Liapunov stable, but not attracting. For each trajectory, parameterized by

(x, y) and originating at (x0, y0), the ODE implies x = x0 and y = y0e
−t. Consequently,

‖(x, y)‖ =
√
x2

0 + (y0e−t)2 ≤
√
x2

0 + y2
0 = ‖(x0, y0)‖, for all t ∈ [0,∞). (216)

This shows, for all ε > 0,

‖(x0, y0)‖ < ε =⇒ ‖(x, y)‖ < ε, (217)

and so the origin is Liapunov stable. In the limit as t −→∞, we see

lim
t→∞

(x, y) = lim
t→∞

(x0y0e
−t) = (x0, 0). (218)

Thus, for all trajectories not originating along the y-axis, the trajectory will converge to a point on

the x-axis other than the origin. This proves the origin is not attracting, and we are done.

e) Let (x, y) be the parameterization of any trajectory and let (x0, y0) denote the starting point of the

trajectory. Integrating the ODE reveals

(x, y) = (x0e
−t, y0e

−5t) =⇒ ‖(x, y)‖ =
√

(x0e−t)2 + (y0e−5t)2 ≤
√
x2

0 + y2
0 = ‖(x0, y0)‖. (219)

Let ε > 0 be given. The previous result shows if ‖(x0, y0)‖ ≤ ε, then ‖(x, y)‖ ≤ ε. Thus the origin is

Liapunov stable. Moreover, it is attracting since

lim
t→∞
‖(x, y)‖ = lim

t→∞

√
(x0e−t)2 + (y0e−5t)2 =

√
x2

0 · 0 + y2
0 · 0 = 0. (220)

Therefore, we conclude the origin is asymptotically stable.

f) We claim the origin is unstable. Let (x, y) be the parameterization of a trajectory originating at
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(x0, y0). Integrating the ODE reveals (x, y) = (x0, y0)et. Therefore, if (x0, y0) is not the origin, then

lim
t→∞
‖(x, y)‖ = lim

t→∞

√
x2

0 + y2
0 · e

t =
√
x2

0 + y2
0 · lim

t→∞
et︸ ︷︷ ︸

=∞

=∞. (221)

This shows the origin is neither asymptotically stable nor Liapunov stable, as claimed.

�
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Problem 5.2.12. Consider the circuit equation LÏ +Rİ + I/C = 0, where L,C > 0 and R ≥ 0.

a) Rewrite the equation as a two-dimensional linear system.

b) Show that the origin is asymptotically stable if R > 0 and Liapunov stable if R = 0.

c) Classify the fixed point at the origin, depending on whether R2C − 4L is positive, negative, or zero,

and sketch the phase portrait in all three cases.

Solution:

a) Letting x = I and y = ẋ and z = (x, y), we see ż = Az, where

A =

 0 1

−1/LC −R/L

 . (222)

b) Momentarily assume R = 0 so that we may identify a conserved quantity corresponding to the

associated undamped system. Let α := 1/LC so that

dy

dx
=
ẏ

ẋ
= −αx

y
=⇒ y dx = −αx dx =⇒ 1

2

(
αx2 + y2

)
= C, (223)

for some constant C ∈ R. This shows that trajectories form an ellipse when R = 0. Consequently,

the origin is Liapunov stable. However, the origin is not asymptotically stable in this case since there

are trajectories arbitrarily close to the origin that are periodic.

Now suppose R > 0 and, in light of above, define the Liapunov function V (x, y) via

V (x, y) :=
1

2

(
αx2 + y2

)
. (224)

Then observe

V̇ = αxẋ+ yẏ = αxy + y(−αx− βy) = −βy2 ≤ 0, (225)

where β := R/L > 0. Additionally, V > 0 everywhere other than the origin. And, the only point

that is a fixed point of the system and yields V̇ = 0 is the origin. This verifies the assumptions of

Lasalle’s theorem, from which we conclude the origin is asymptotically stable.
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c) The characteristic polynomial for the system is

χ(λ) = det(λI −A) =

∣∣∣∣∣∣ λ −1

α λ+ β

∣∣∣∣∣∣ = λ(λ+ β) + α = λ2 + βλ+ α. (226)

This implies the eigenvalues of the system satisfy

λ =
−β ±

√
β2 − 4α

2
. (227)

Since

β2 − 4α =
R2

L2
− 4

LC
=

1

L2C

[
R2C − L

]
, (228)

and so it suffices to consider the sign of β2 − 4α since this matches the term given in the prompt.

If β2 − 4α > 0, then λ1, λ2 ∈ R and are negative. In this case, the origin forms a stable node. If

β2 − 4α = 0, then λ1 = λ2 = −β < 0, and so the origin forms a stable degenerate node??.

�
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Chapter 6

Example 6.8.5. Show that closed orbits are impossible for the “rabbit vs. sheep” system

ẋ = x(3− x− 2y), ẏ = y(2− x− y). (229)

Solution:

The fixed points of this system, written in the form (x, y), are (0, 0), (0, 2), (3, 0), and (1, 1). The Jacobian

for this system is given by

J(x, y) =

 ∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y

 =

 3− 2x− 2y −2x

−y 2− x− 2y

 . (230)

This implies

J(0, 0) =

 3 0

0 2

 , (231)

which has eigenvalues 2 and 3, making the origin form an unstable node. Also,

J(, 1, 1) =

 −1 −2

−1 −1

 , (232)

which has eigenvalues that satisfy

0 = (λ+ 1)2 − 2 = λ2 + 2λ− 1 =⇒ λ =
−2±

√
22 − 4(−1)

2
= −1±

√
2, (233)

and so (1, 1) forms a saddle. Similarly,

J(3, 0) =

 −3 −6

0 −1

 , (234)
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which has eigenvalues −1 and −3, thereby implying (3, 0) is a stable node. Lastly,

J(0, 2) =

 −1 0

−2 −2

 , (235)

which has eigenvalues −1 and −2, thereby implying (0, 2) is a stable node.

Having the above results, we prove no closed orbits exist via index theory. A theorem in Strogatz’s text5

states any closed orbit in the phase plane must enclose fixed points whose indices sum to unity. Since the

fixed point (1, 1) is a saddle point, its index is −1. And, as (0, 2) and (3, 0) are stable nodes, these each have

index 1. Now suppose there exists a closed orbit in the xy-plane. By the theorem and the listed indices,

the closed orbit must enclose either (0, 2) or (3, 0). However, this is not possible since no trajectories cross

the null-clines x = 0 and y = 0. Therefore, the system does not admit any closed orbits. �

Example 6.8.6. Show the system ẋ = xe−x, ẏ = 1 + x+ y2 has no closed orbits.

Solution:

Observe ẋ = 0 if and only if x = 0. Thus, if ẋ = 0, then ẏ = 1 + y2 ≥ 1 6= 0. This shows the system

has no fixed points. By a theorem in in Strogatz’s text6, if C is a closed orbit in the system, then it must

enclose fixed points whose indices sum to unity. Since the system does not admit any fixed points, the

contrapositive of the theorem implies the system does not possess any closed orbits. �

5See Theorem 6.8.2 on page 180.
6See Theorem 6.8.2 on page 180.
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Problem 6.4.1. Consider the following “rabbit vs. sheep” problem, where x, y ≥ 0. Find the fixed points,

investigate their stability, draw the nullclines, and sketch plausible phase portraits. Indicate the basins of

attraction of any stable fixed points.

ẋ = x(3− x− y), ẏ = y(2− x− y). (236)

Solution:

The fixed points (x, y) for this system are given by (0, 0), (0, 2), and (3, 0). The Jacobian matrix for this

system is given by

J(x, y) =

 ∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y

 =

 3− 2x− y −x

−y 2− x− 2y

 . (237)

This implies

J(0, 0) =

 3 0

0 2

 , (238)

for which the eigenvalues are both positive, thereby implying (0, 0) forms an unstable node. Similarly,

J(0, 2) =

 1 0

−2 −2

 , (239)

which has eigenvalues 1 and −2, thereby implying (0, 2) forms a saddle point. Lastly,

J(3, 0) =

 −3 −3

0 −1

 , (240)

which has eigenvalues −3 and −1, thereby implying (3, 0) forms a stable node. The nullclines are given by

y = 3−x (where ẋ = 0) and y = 2−x (where ẏ = 0). A phase portrait is given in Figure 1. As illustrated,

the basin of attraction for the single stable node (3, 0) is {x > 0} × {y > 0}.
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Figure 1: Phase portrait for Strogatz Problem 6.4.1.

�
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Problem 6.4.2. Consider the following “rabbit vs. sheep” problem, where x, y ≥ 0. Find the fixed points,

investigate their stability, draw the nullclines, and sketch plausible phase portraits. Indicate the basins of

attraction of any stable fixed points.

ẋ = x(3− 2x− y), ẏ = y(2− x− y). (241)

Solution:

The fixed points (x, y) for this system are given by (0, 0), (0, 2), (3/2, 0), and (1, 1). The Jacobian matrix

for this system is given by

J(x, y) =

 ∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y

 =

 3− 4x− y −x

−y 2− x− 2y

 . (242)

This implies

J(0, 0) =

 3 0

0 2

 , (243)

for which the eigenvalues are both positive, thereby implying (0, 0) forms an unstable node. Similarly,

J(0, 2) =

 1 0

−2 −2

 , (244)

which has eigenvalues 1 and −2, thereby implying (0, 2) forms a saddle point. And,

J(3/2, 0) =

 −3 −3/2

0 1/2

 , (245)

which has eigenvalues −3 and 1/2, thereby implying (3/2, 0) forms a saddle. Lastly,

J(1, 1) =

 −2 −1

−1 −1

 , (246)
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which has eigenvalues that satisfy the characteristic equation

0 = (λ+ 2)(λ+ 1)− 1 = λ2 + 3λ+ 1 =⇒ λ =
−3±

√
32 − 4

2
=
−3±

√
5

2
, (247)

and so (1, 1) forms a stable node. The nullclines are given by y = 3 − 2x (where ẋ = 0) and y = 2 − x

(where ẏ = 0). A phase portrait is given in Figure 2. As illustrated, the basin of attraction for the single

stable node (1, 1) is {x > 0} × {y > 0}.

Figure 2: Phase portrait for Strogatz Problem 6.4.2.

�
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Problem 6.4.3. Consider the following “rabbit vs. sheep” problem, where x, y ≥ 0. Find the fixed points,

investigate their stability, draw the nullclines, and sketch plausible phase portraits. Indicate the basins of

attraction of any stable fixed points.

ẋ = x(3− 2x− 2y), ẏ = y(2− x− y). (248)

Solution:

The fixed points (x, y) for this system are given by (0, 0), (0, 2), and (3/2, 0). The Jacobian matrix for this

system is given by

J(x, y) =

 ∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y

 =

 3− 4x− 2y −2x

−y 2− x− 2y

 . (249)

This implies

J(0, 0) =

 3 0

0 2

 , (250)

for which the eigenvalues are both positive, thereby implying (0, 0) forms an unstable node. Similarly,

J(0, 2) =

 −1 0

−2 −2

 , (251)

which has eigenvalues −1 and −2, thereby implying (0, 2) forms a stable node. And,

J(3/2, 0) =

 −3 −3

0 1/2

 , (252)

which has eigenvalues −3 and 1/2, thereby implying (3/2, 0) forms a saddle. The nullclines are given by

y = (3 − 2x)/2 (where ẋ = 0) and y = 2 − x (where ẏ = 0). A phase portrait is given in Figure 3. As

illustrated, the basin of attraction for the single stable node (0, 2) is {x > 0} × {y > 0}.
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Figure 3: Phase portrait for Strogatz Problem 6.4.3.
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Problem 6.5.1. Consider the system ẍ = x3−x. Find all the equilibrium points and classify them. Find

a conserved quantity. Sketch the phase portrait.

Solution:

We write the ODE as the system

ẋ = y, ẏ = x3 − x. (253)

The fixed points (x, y) of the system are (0, 0), (1, 0) and (−1, 0). The system is Hamiltonian since

∂ẋ

∂x
+
∂ẏ

∂y
=

∂

∂x
[y] +

∂

∂y

[
x3 − x

]
= 0. (254)

This implies there exists a function H(x, y) such that Hx = −ẏ and Hy = ẋ. Integrating reveals

H =

∫ x

Hx(x̃, y) dx̃ =

∫ x

x̃− x̃3 dx̃ =
x2

2
− x4

4
+ g(y), (255)

for some function g(y). Similarly,

H =

∫ y

Hy(x, ỹ) dỹ =

∫ y

ỹ dỹ =
y2

2
+ f(x), (256)

for some function f(x). Combining the previous two results, we may take

H(x, y) =
x2

2
− x4

4
+
y2

2
. (257)

Then

Ḣ = (x− x3)ẋ+ yẏ = (x− x3)y + y
(
x3 − x

)
= 0, (258)

as desired. Furthermore, because the system is Hamiltonian, the only fixed points are centers and saddles.

The Jacobian matrix for this system is given by

J(x, y) =

 ∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y

 =

 0 1

3x2 − 1 0

 , (259)

which has eigenvalues that satisfy

0 = λ2 − (3x2 − 1) =⇒ λ = ±
√

3x2 − 1. (260)
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Consequently, (−1, 0) and (1, 0) form saddles and the eigenvalues of J(0, 0) are entirely complex, making

(0, 0) form a center. The nullclines are given by x = 0, x = 1, x = −1 (where ẏ = 0) and y = 0 (where

ẋ = 0). A phase plot is given in Figure 4.

Figure 4: Phase portrait for Strogatz Problem 6.5.1.
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Problem 6.5.2. Consider the system ẍ = x−x2. Find all the equilibrium points and classify them. Find

a conserved quantity. Sketch the phase portrait. Find an equation of the homoclinic orbit that separates

closed and nonclosed trajectories.

Solution:

We write the ODE as the system

ẋ = y, ẏ = x− x2. (261)

The fixed points (x, y) of the system are (0, 0) and (1, 0). The system is Hamiltonian since

∂ẋ

∂x
+
∂ẏ

∂y
=

∂

∂x
[y] +

∂

∂y

[
x− x2

]
= 0. (262)

This implies there exists a function H(x, y) such that Hx = −ẏ and Hy = ẋ. Integrating reveals

H =

∫ x

Hx(x̃, y) dx̃ =

∫ x

x̃2 − x̃ dx̃ =
x3

3
− x2

2
+ g(y), (263)

for some function g(y). Similarly,

H =

∫ y

Hy(x, ỹ) dỹ =

∫ y

ỹ dỹ =
y2

2
+ f(x), (264)

for some function f(x). Combining the previous two results, we may take

H(x, y) =
x3

3
− x2

2
+
y2

2
. (265)

Then

Ḣ = (x2 − x)ẋ+ yẏ = (x2 − x)y + y
(
x− x2

)
= 0, (266)

as desired. Furthermore, because the system is Hamiltonian, the only fixed points are centers and saddles.

The Jacobian matrix for this system is given by

J(x, y) =

 ∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y

 =

 0 1

1− 2x 0

 , (267)
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which has eigenvalues that satisfy

0 = λ2 − (1− 2x) =⇒ λ = ±
√

1− 2x. (268)

Consequently, (0, 0) forms a saddle and (1, 0) forms a center. The nullclines are given by x = 0 and x = 1

(where ẏ = 0) and y = 0 (where ẋ = 0). A phase plot is given in Figure 5.

Figure 5: Phase portrait for Strogatz Problem 6.5.2.

Lastly, we identify the homoclinic orbit. This orbit originates at the origin and terminates at the origin in

the limit as t −→∞. Because the Hamiltonian H is conserved in time, the set of all points along this orbit

are given by {
(x, y) :

x3

3
− x2

2
+
y2

2
= H(x, y) = H(0, 0) = 0

}
. (269)

�
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Problem 6.5.4. Consider the system ẍ = ax− x2. Find all the equilibrium points and classify them (for

the different cases of a). Find a conserved quantity. Sketch the phase portrait.

Solution:

We write the ODE as the system

ẋ = y, ẏ = ax− x2. (270)

The fixed points (x, y) of the system are (0, 0) and (a, 0). The system is Hamiltonian since

∂ẋ

∂x
+
∂ẏ

∂y
=

∂

∂x
[y] +

∂

∂y

[
ax− x2

]
= 0. (271)

This implies there exists a function H(x, y) such that Hx = −ẏ and Hy = ẋ. Integrating reveals

H =

∫ x

Hx(x̃, y) dx̃ =

∫ x

x̃2 − x̃ dx̃ =
x3

3
− ax2

2
+ g(y), (272)

for some function g(y). Similarly,

H =

∫ y

Hy(x, ỹ) dỹ =

∫ y

ỹ dỹ =
y2

2
+ f(x), (273)

for some function f(x). Combining the previous two results, we may take

H(x, y) =
x3

3
− ax2

2
+
y2

2
. (274)

Then

Ḣ = (x2 − ax)ẋ+ yẏ = (x2 − ax)y + y
(
ax− x2

)
= 0, (275)

as desired. Furthermore, because the system is Hamiltonian, the only fixed points are centers and saddles.

The Jacobian matrix for this system is given by

J(x, y) =

 ∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y

 =

 0 1

a− 2x 0

 , (276)

which has eigenvalues that satisfy

0 = λ2 − (a− 2x) =⇒ λ = ±
√
a− 2x. (277)
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Consequently, when a > 0, the origin forms a saddle and (a, 0) forms a center. When a < 0, the origin

forms a center and (a, 0) forms a saddle. When a = 0, the only fixed point is the origin, which forms a

saddle (Return and explain). A phase plot is given in Figure 6.

Figure 6: Phase portraits for Strogatz Problem 6.5.4. From left to right, a has values −1, 0, and 1.

�
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Problem 6.7.1. Find and classify the fixed points of θ̈ + bθ̇ + sin θ = 0 for all b > 0, and plot the phase

portraits for qualitatively different cases.

Solution:

We may rewrite the given ODE as the ODE system, taking x = θ,

ẋ = y, ẏ = −by − sin(x). (278)

Since ẋ = 0 if and only if y = 0, we see the fixed points occur whenever y = 0 and sin(x) = 0, i.e., at

(kπ, 0) for all k ∈ Z. The Jacobian matrix for the system is given by

J(x, y) =

 ∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y

 =

 0 1

− cos(x) −b

 . (279)

For even k ∈ Z,

J(kπ, 0) =

 0 1

−1 −b

 , (280)

which has eigenvalues that satisfy

0 = λ(λ+ b) + 1 = λ2 + bλ+ 1 =⇒ λ =
−b±

√
b2 − 4

2
. (281)

For odd k ∈ Z,

J(kπ, 0) =

 0 −1

−1 −b

 , (282)

which similarly yields eigenvalues

λ =
−b±

√
b2 + 4

2
. (283)

From the above, we see (kπ, 0) forms a saddle whenever k ∈ Z is odd. And, when k ∈ Z is even, (kπ, 0)

forms a stable node when b > 2 and a stable spiral when b < 2. The null-clines are given by y = 0, where

ẋ = 0, and y = sin(x)/b, where ẏ = 0. Below are plots of phase portraits. Note the system is periodic in

x, with period 2π.
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Figure 7: On the left is a plot with b = 2.2 and on the right with b = 1.

�
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Problem 6.7.2.7 The equation θ̈ + sin θ = γ describes the dynamics of an undamped pendulum driven

by a constant torque, or an undamped Josephson junction driven by a constant bias current. Find all the

equilibrium points and classify them as γ varies. Sketch the phase portrait for qualitatively different γ.

Solution:

Taking x = θ, we may rewrite the given ODE as the ODE system

ẋ = y, ẏ = γ − sin(x). (284)

First note the system is Hamiltonian since

∂ẋ

∂x
+
∂ẏ

∂y
=

∂

∂x
[y] +

∂

∂y
[γ − sin(x)] = 0, (285)

which implies all fixed points are either centers or saddles. If γ /∈ [−1, 1], then the system does not admit

any fixed points (since in such a case ẏ 6= 0 always). If γ ∈ [−1, 1], then the fixed points are given by all

points (x, y) such that

(x, y) = (arcsin(γ), 0). (286)

The Jacobian matrix for this system is given by

J(x, y) =

 ∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y

 =

 0 1

− cos(x) 0

 . (287)

Thus,

J(arcsin(γ), 0) =

 0 1

− cos(arcsin(γ)) 0

 =

 0 1

−
√

1− γ2 0

 , (288)

which has eigenvalues λ = i
√

1− γ2. Therefore, the fixed points are centers. The null-clines are given by

y = 0, where ẋ = 0, and x = arcsin(γ), where ẏ = 0. Note that, because the sine function is periodic, there

are countably many vertical lines where ẏ = 0. Phase plots are provided below.

7This is a modified form of the prompt, reflecting what we might expect on the qual.
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Figure 8: Phase plot with γ = π/6 on the left and γ = 3/2 on the right.

�
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Problem 6.8.7. Show the system ẋ = x(4− y − x2), ẏ = y(x− 1) has no closed orbits.

Solution:

We first identify the fixed points and their type. Written in the form (x, y), these are (0, 0), (2, 0), (−2, 0),

and (1, 3). The Jacobian for the system is given by

J(x, y) =

 ∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y

 =

 4− y − 3x2 −x

y x− 1

 . (289)

This implies

J(0, 0) =

 4 0

0 −1

 , (290)

which has eigenvalues 4 and −1, and thus (0, 0) forms a saddle. Also,

J(±2, 0) =

 −8 −2

0 1

 , (291)

which has eigenvalues −8 and 1, and thus and (−2, 0) and (2, 0) form saddles. Similarly,

J(1, 3) =

 −24 −1

3 0

 , (292)

which has eigenvalues that satisfy

0 = (λ+ 24)λ+ 3 = λ2 + 24λ+ 3 =⇒ λ =
−24±

√
242 − 4 · 3
2

, (293)

and there are two distinct real-valued negative eigenvalues. Thus, (1, 3) forms a stable spiral.

By a theorem in in Strogatz’s text8, if C is a closed orbit in the system, then C must enclose fixed points

whose indices sum to unity. The index of a saddle is -1 and the index of a stable node is 1. Since there

is precisely one stable node and the rest of the fixed points are saddles, if there is a closed orbit in the

system, then it must enclose (1, 3) and not enclose any other fixed points.

8See Theorem 6.8.2 on page 180.
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Because there is a vertical null-cline along x = 0 and a horizontal null-cline along y = 0, each orbit enclosing

(1, 3) is restricted to the first quadrant. Now let (x, y) be a parameterization of any trajectory originating

in the first quadrant not at (1, 3). We claim (x, y) −→ (1, 3) as t −→ ∞. This implies the trajectory is

nonperiodic and, thus, not a closed orbit. Since this was an arbitrary trajectory in the first quadrant, we

conclude no closed orbits exist.

All that remains is to verify asymptotic stability. Observe

dx

dy
=
ẋ

ẏ
=
x(4− y − x2)

y(x− 1)
=⇒ x− 1

x
dx =

4

y
− 1− x2

y
dy ≈ 3

y
− 1 dy, (294)

for x ≈ 1. Upon integrating, we see it fitting to define the Liapunov function V (x, y) by

V (x, y) := y − 3 ln(y) + x− ln(x) + 3 ln(3)− 4. (295)

Note V (1, 3) = 0 and

∇V (x, y) =

(
x− 1

x
,
y2 − 3

y

)
. (296)

This shows Vx < 0 for x < 1 and Vx > 0 for x > 1. Similarly, Vy < 0 for y < 3 and Vy > 0 for y > 3.

Whence (1, 3) is a strict local minimizer of V . Furthermore, for x, y > 0,

V̇ =

(
y − 3

y

)
ẏ +

(
x− 1

x

)
ẋ

= (y − 3)(x− 1) + (x− 1)(4− y − x2)

= (y − 3)(x− 1) + (x− 1)(3− y) + (x− 1)(1− x2)

= −(1− x)2(1 + x)

≤ 0.

(297)

The only fixed point for which V̇ = 0 is (1, 3). We have verified the hypotheses of Lasalle’s theorem,

which asserts (1, 3) is necessarily asymptotically stable. This completes the proof. �
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Chapter 7

Example 7.2.4. Show the following system has no closed orbits in the positive portion of the first

quadrant:

ẋ = x(2− x− y), ẏ = y(4x− x2 − 3). (298)

Solution:

We proceed by applying Dulac’s Criterion, which asserts there are no closed orbits in the first quadrant

provided there exists a continuously differentiable function g : R2 → R such that ∇·(g(z)ż) is single-signed

in the first quadrant, where here we write z = (x, y). For g(z) = xayb, we see

∇ · (gż) =
∂

∂x

[
xa+1yb(2− x− y)

]
+

∂

∂y

[
xayb+1(4x− x2 − 3)

]
=
[
(a+ 1)xayb(2− x− y)− xa+1yb

]
+
[
(b+ 1)xayb(4x− x2 − 3) + 0

]
.

(299)

Thus, taking a = b = −1, we obtain g = 1/(xy) and

∇ · (gż) = 0− x−1+1y−1 + 0 = −y−1 < 0. (300)

Since this holds for all z = (x, y) ∈ (0,∞)× (0,∞), we conclude the ODE system admits no closed orbits.

�
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Problem 7.3.1. Consider the ODE system9

ẋ = x− y − x(x2 + 5y2), ẏ = x+ y − y(x2 + y2). (301)

Classify the fixed point at the origin and prove there exists a limit cycle.

Solution:

The Jacobian J(x, y) matrix for this system is given by

J(x, y) =

 ∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y

 =

 1− 3x2 − 5y2 −1− 10xy

1− 2xy 1− x2 − 3y2

 , (302)

and so

J(0, 0) =

 1 −1

1 1

 , (303)

which has eigenvalues that satisfy

0 = (λ− 1)2 + 1 = λ2 − 2λ+ 2 =⇒ λ =
2±
√

22 − 4 · 2
2

= 1± i. (304)

Thus the origin forms an unstable spiral. We now convert to polar coordinates to find

2rṙ =
d

dt

[
r2
]

=
d

dt

[
x2 + y2

]
= 2[xẋ+ yẏ]

= 2
[
x2 − xy − x4 − 5x2y2

]
+ 2

[
xy + y2 − x2y2 − y4

]
= 2[(x2 + y2)− (x2 + y2)2 − 4x2y2]

= 2
[
r2 − r4

[
1 + 4 sin2 cos2 θ

]]
= 2r2

[
1− r2

[
1 + sin2(2θ)

]]
.

(305)

Consequently, we see

ṙ = r
[
1− r2

[
1 + sin2(2θ)

]]
, (306)

9The prompt has been modified to reflect the style that shows up on quals.
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which has the nullclines r = 0 and

r =
1√

1 + sin2(2θ)
. (307)

Similarly,

θ̇ =
xẏ − yẋ
r2

=

[
x2 + xy − x3y − xy3

]
−
[
xy − y2 − x3y − 5xy3

]
r2

=
(x2 + y2) + 4xy3

r2

= 1 +
4xy3

x2 + y2

= 1 + 4r2 cos(θ) sin3(θ)

= 1 + r2 sin(2θ)[1− cos(2θ)].

(308)

Along the nontrivial null-cline ṙ = 0 we see

θ̇ = 1 +
sin(2θ)[1− cos(2θ)]

1 + sin2(2θ)
≥ 1− 2 sin(2θ)

1 + sin2(2θ)
. (309)

Taking f(x) := 1− 2x/(1 + x2), we see

f ′(x) = −2 · (1 + x2)− (2x)(x)

(1 + x2)2
= −2 · 1− x2

(1 + x2)2
≤ 0, for all x ∈ [−1, 1], (310)

with the inequality strict wheenver |x| 6= 1. Thus,

θ̇ ≥ inf
θ∈[0,π]

1− 2 sin(2θ)

1 + sin2(2θ)
= inf

θ∈[0,π]
f(sin(2θ)) = f(sin(π/4)) = 1− 2

1 + 12
= 0, (311)

which shows the only possible angle θ at which θ̇ = 0 along the null-cline would be at θ = π/4. But,

plugging in the exact expression for θ̇ reveals, along the null-cline,

θ̇
∣∣∣
θ=π/4

= 1 +
1[1− 0]

1 + 12
=

3

2
> 0. (312)

Whence the system admits no fixed points.
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We now proceed by constructing a trapping region. Observe

sup
θ

1√
1 + sin2(2θ)

=
1√

1 + 0
= 1, (313)

which implies, by (306) and (307), ṙ ≤ 0 for r ≥ 1. Similarly,

inf
θ

1√
1 + sin2(2θ)

=
1√

1 + 1
=

1√
2

(314)

implies ṙ ≥ 0 for r ≤ 1/
√

2. Therefore, the region R := {(r, θ) : 1/
√

2 ≤ r ≤ 1} forms a closed subset of the

plane R2. And, by our earlier work, R contains no fixed points. Additionally, the trajectory originating

at (r, θ) = (1, 0) is along the null-cline in (307) and, by our choice of R, is contained within R for all time.

The Poincaré-Bendixson theorem then asserts R contains a closed orbit.10 �

Remark: A phase plane plot for the previous problem is given below.

Figure 9: Phase plane for Strogatz Problem 7.3.1.

4

10In fact, the null-cline for r forms a closed orbit, and so we didn’t actually need the Poincaré-Bendixson theorem here.
However, we find it pedagogical to show its application.
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Problem 7.3.3. Show the following ODE system has a periodic solution:

ẋ = x− y − x3, ẏ = x+ y − y3. (315)

Solution:

We proceed by converting to polar coordinates and applying the Poincaré-Bendixson theorem. First observe

differentiating r2/2 reveals

rṙ = xẋ+ yẏ

=
[
x2 − xy − x4

]
+
[
xy + y2 − y4

]
= (x2 + y2)− (x4 + 2x2y2 + y4) + 2x2y2

= r2 − r4 + 2r4 sin2 θ cos2 θ

= r2

[
1− r2

(
1− sin2(2θ)

2

)]
,

(316)

which implies

ṙ = r

[
1− r2

(
1− sin2(2θ)

2

)]
. (317)

Thus, the null-clines for ṙ = 0 are r = 0 and

r =
2

2− sin2(2θ)
. (318)

Additionally,

θ̇ =
xẏ − ẋy
r2

=

[
x2 + xy − xy3

]
−
[
xy − y2 − x3y

]
r2

=
x2 + y2 + xy3 + x3y

r2

= 1 + r2 sin θ cos θ
[
sin2 θ + cos2 θ

]
= 1 +

r2 sin(2θ)

2
.

(319)

Along the null-cline in (318),
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θ̇ = 1 +
sin(2θ)

2
· 2

2− sin2(2θ)
= 1 +

sin(2θ)

2− sin2(2θ)
≥ 1 +

−1

2− 1
=

1

2
> 0, (320)

where we note the max value obtained by sin(2θ) is 1, and the expression for θ̇ is strictly increasing as a

function of sin(2θ) since

f(x) := 1 + x/(2− x2) =⇒ f ′(x) =
(2− x2)− x(−2x)

(2− x2)2
=

2 + x2

(2− x2)2
> 0. (321)

Because θ̇ 6= 0 along the nontrivial null-cline for ṙ = 0, the only fixed point of the system occurs at the

origin. Furthermore, since

inf
θ

2

2− sin2(2θ)
=

2

2− 0
= 1 and sup

θ

2

2− sin2(2θ)
=

2

2− 1
= 2, (322)

it follows that ṙ ≥ 0 for r ≤ 1 and ṙ ≤ 0 for r ≥ 2. Therefore, the region R defined by {(r, θ) : 1 ≤ r ≤ 2}

is closed. This region also does not contain any fixed points. And, it contains at least one trajectory;

namely, the null-cline (318). Hence the Poincaré-Bendixson theorem asserts there is a closed orbit in R.

This completes the proof. �

Remark: A phase plane plot for the previous problem is given below.

Figure 10: Phase plane for Strogatz Problem 7.3.3.

4
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Problem 7.3.4. Consider the ODE system:

ẋ = x(1− 4x2 − y2)− y(1 + x)

2
, ẏ = y(1− 4x2 − y2) + 2x(1 + x). (323)

a) Show the origin forms an unstable fixed point.

b) Show all trajectories approach the ellipse 4x2 + y2 = 1 as t −→∞.

Solution:

a) The Jacobian matrix J(x, y) for this system is given by

J(x, y) =

 ∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y

 =

 1− 12x2 − y2 − y/2 −2xy − 1/2

−8xy + 2(1 + x) + 2x 1− 4x2 − 3y2

 . (324)

This implies

J(0, 0) =

 1 −1/2

2 1

 , (325)

which has eigenvalues λ satisfying

0 = (λ− 1)2 + 1 = λ2 − 2λ+ 2 =⇒ λ =
2±
√

22 − 4 · 2
2

= 1± i, (326)

and so the origin forms an unstable spiral.

b) Differentiating in time reveals

V̇ = 2(1− 4x2 − y2) [−8xẋ− 2yẏ]

= −2V 1/2
[
8x2 − 4xy − 4x2 + 2y2V 1/2 + 4xy + 4x2

]
= −2V [8x2 + 2y2]

≤ 0,

(327)

with the inequality strict whenever (x, y) is neither along the ellipse V = 0 nor at the origin. Consider

any trajectory originating at a location other than the origin. Along the trajectory, V̇ < 0 and V ≥ 0,
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from which the monotone convergence theorem asserts V converges to a limit V ?. This implies

0 = V̇ ? = lim
t→∞

V̇ = lim
t→∞
−2V [8x2 + y2] =⇒ lim

t→∞
V = V ? = 0, (328)

noting 8x2 +y2 > 0 along the trajectory. This shows V −→ 0 as t −→∞, i.e., the trajectory approaches

the ellipse as t −→∞.

�

Remark: A phase plane plot for the previous problem is given below.

Figure 11: Phase plane for Strogatz Problem 7.3.4.

4
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Problem 7.3.5. Show the following ODE system has at least one periodic solution:

ẋ = −x− y + x(x2 + 2y2), ẏ = x− y + y(x2 + 2y2). (329)

Solution:

We proceed by converting to polar coordinates and find a nontrivial periodic solution. Differentiating r2/2

in time reveals

rṙ = xẋ+ yẏ

=
[
−x2 − xy + x4 + 2x2y2

]
+
[
xy − y2 + x2y2 + y4

]
= −(x2 + y2) + (x2 + y2)2 + x2y2

= −r2 + r4 + r4 cos2 θ sin2 θ

= r2

[
−1 + r2

(
1 +

sin2(2θ)

2

)]
.

(330)

Therefore the null-clines for ṙ = 0 are given by r = 0 and

r =

√
2

2 + sin2(2θ)
. (331)

Additionally,

θ̇ =
xẏ − yẋ
r2

=

[
x2 − xy + x3y + 2xy3

]
−
[
−xy − y2 + x3y + 2xy3

]
r2

=
x2 + y2

r2
= 1. (332)

The fact θ̇ = 1 everywhere implies θ = t + θ0 and the only fixed point of this system is the origin. Thus,

the ODE system admits the periodic solution

(r, θ) =

(√
2

2 + sin2(2t)
, t

)
, (333)

and we are done.11 �
11Note we cannot use the Poincaré-Bendixson theorem for this problem since the limit cycle is unstable.

78 Last Modified: 4/26/2019



ADE Qual Notes Heaton

Remark: A phase plane plot for the previous problem is given below.

Figure 12: Phase plane for Strogatz Problem 7.3.5.

4
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Bender and Orszag

The following are problems taken from the text of Bender and Orszag, reflecting types of problems that

have begun to show up on the ADE qual in recent years and in MATH 266A course materials. Contrary

to the authors of this textbook, I do not find much of the material “easy” (as they indicate by labels next

to problems and sections).

Unfortunately, examples from this text are not provided in the online version. Please contact me via email

if you wish to inquire about the solutions to these problems.
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Past Homework Solutions

Problem 1. Solve the PDE 
ut +

1

2
· (ux)2 − ux = 0 in R× (0,∞),

u = g on R× {t = 0}
(393)

where a) g = | · | and b) where g = −| · |.

Solution:

a) This is a Hamilton Jacobi equation with Hamiltonian H(p) := p2/2− p. We compute the Lagrangian

L as the dual of H, i.e.,

L(v) := H∗(v) := sup
p∈R
{p · v −H(p)}= sup

p∈R

{
p · v − 1

2
· p2 + p

}
. (394)

We assume the supremum is taken on at the critical point of the braced expression (i.e., that it

can be replaced by a max). At this critical point, we find

0 = Dp

[
p · v − 1

2
· p2 + p

]
= v − p+ 1 =⇒ p = v + 1. (395)

Hence

L(v) = (v + 1) · v − 1

2
(v + 1)2 + (v + 1) =

1

2
(v + 1)2. (396)

Using the Hop-Lax formula, we find

u(x, t) = min
y∈R

{
t · L

(
x− y
t

)
+ g(y)

}
= min

y∈R

{
1

2t
· (x− y + 1)2 + g(y)

}
. (397)

Note the expression to be minimized is convex. Thus, at a minimizer y?, the optimality condition
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with the subgradient is

0 ∈ ∂

∂y

[
1

2t
· (x− y + 1)2 + |y|

]
y=y?

=
1

t
(x− y? + 1) + sgn(y?) =⇒ y? ∈ x+ 1 + tφ(y?), (398)

where φ(y) equals the sign of y when y 6= 0 and [−1, 1] otherwise. (Return and complete.)

�
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Qual Solutions

Reflections: We use a reflection to extend the domain of a function. Odd extensions are used to enforce a

Direchlet condition (e.g., that the function is zero at the origin) while even reflections enforce a Neumann

condition (e.g., the derivative is zero at the origin).

Entropy solutions: The entropy satisfying weak solution of a PDE is a function u for which15

1. u` and ur are solutions to the PDE to the left and right of each shock curve C;

2. the Rankine-Hugoniot condition is satisfied along each shock C;

3. F ′(u`) > ṡ > F ′(ur) along each shock C.

15There is also a more general condition than 3 given in the PDE text by Evans.
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2018 Fall

F18.1.

a) Consider the dynamical system

ẋ = ax+ by, ẏ = cx+ dy, (399)

where a, b, c, d ∈ R (with ad− bc ≥ 0) are constants. Classify the equilibrium at (0, 0) for all possible

choices of the four constants. Indicate clearly all bifurcations that occur, and designate when you

get closed orbits.

b) Consider the dynamical system

ẋ = −y + αx(x2 + y2), ẏ = x+ αy(x2 + y2), (400)

where α ∈ R is a constant. Determine, with appropriate arguments, the stability of the equilibrium

point at the origin. Also draw the phase portraits for this system for all qualitatively different values

of α.

Solution:

a) The Jacobian for the system is given by16

J(x, y) =

 ∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y

 =

 a b

c d

 , (401)

which has eigenvalues satisfying the characteristic equation

0 = (a− λ)(d− λ)− bc = λ2 − (a+ d)λ+ (ad− bc) = λ2 − τλ+ ∆, (402)

where τ := a+ d is the trace and ∆ := ad− bc is the discriminant. Thus,

λ =
τ ±
√
τ2 − 4∆

2
. (403)

Then we have the following cases.

16This problem is taken straight out of the explanations in Chapter 5 of Strogatz’s text.
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If ∆ < 0, then the eigenvalues are real and have opposite signs and, thus, form saddles points.

If ∆ > 0, the eigenvalues are either real with the same sign (nodes) or complex conjugate (spirals or

centers). Nodes satisfy τ2− 4∆ > 0 and spirals satisfy τ2− 4∆ < 0. The parabola τ2− 4∆ = 0 is the

borderline between nodes and spirals, upon which we obtain degenerate and star nodes. The stability

in these cases is determined by τ . If τ < 0, both eigenvalues have negative real parts, making the

fixed point stable. Unstable spirals occur when τ > 0. Neutrally stable centers occur when τ = 0.

If ∆ = 0, then at least one eigenvalue is zero. This means the origin is not an isolated fixed point.

We illustrate these results in Figure 13. From this, we see bifurcations occur along ∆ = 0, along

τ = 0, and along 4∆ = τ2. Centers (when τ = 0) are when closed orbits occur.

Saddles

Unstable NodesStable Nodes

Stable

Spiral

Unstable

Spiral

∆

τ

Figure 13: Classifications of fixed point determined by τ and ∆.

b) We proceed17 by using standard polar coordinates (r, θ). Observe

ṙ =
∂r

∂x
ẋ+

∂r

∂y
ẏ =

1

r
[rẋ+ yẏ] =

1

r

[
x
(
−y + αxr2

)
+ y

(
x+ αyr2

)]
= αr3. (404)

This implies

−r sin θ+αr3 cos θ = −y+αx(x2+y2) = ẋ = ṙ cos θ−rθ̇ sin θ =⇒ r sin θ[θ̇−1] = [ṙ − αr3]︸ ︷︷ ︸
=0

cos θ = 0.

(405)

17Note this is Example 6.3.2 in Strogatz’s text.
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Since this holds for all y = r sin θ, it follows that θ̇ = 1, i.e., the trajectories are proceed countercloc-

kwise with constant angular speed unity. Consequently, if α = 0, then r is constant in time, which

implies the origin forms a stable equilibrium point. If α > 0, then r is increasing in time (strictly for

r 6= 0), in which case the origin forms an unstable fixed point. If α < 0, then r is decreasing in time

(strictly for r 6= 0), making the origin asymptotically stable.

Figure 14: Plots of the ODE system for α = 1, α = 0, and α = −1, from left to right.

�

101 Last Modified: 4/26/2019



ADE Qual Notes Heaton

F18.2. Consider the equation

xy′′ + (2x− 1)y′ +
1

x
y = 0. (406)

a) Classify the points x = 0 and x =∞ as ordinary, regular, or irregular singular points.

b) For x = 0, determine the indicial equation and indicial exponents. Find the series expansion about

x = 0 for the solution of (406) that satisfies y′(0) = 1, and from it obtain the solution in closed form.

Why is one initial condition sufficient to determine this solution uniquely?

Solution:

a) The ODE may be rewritten as

y′′ + py′ + qy = 0, (407)

where p(x) = (2 − 1/x) and q(x) = 1/x2. Since both p and q blow up as x −→ 0, the point x = 0 is

not ordinary. However, since xp = 2x − 1 and x2q = 1 are analytic in a neighborhood of x = 0, the

point x = 0 is a regular singular point.

The point x =∞ will be classified according to how x = 1/t is classified at t = 0. Observe

dy

dx
=

dy

dt

dx

dt
= −x−2 dy

dt
, (408)

and so
d2y

dx2
=

d

dx

[
−x−2 dy

dt

]
= 2x−3 dy

dt
− x−2 d2y

dt2
dx

dt
= 2t3

dy

dt
− t4 d2y

dt2
. (409)

Thus, the ODE becomes

0 =

(
2t3

dy

dt
− t4 d2y

dt2

)
+ (2− t)

(
−t2 dy

dt

)
+ t2y =⇒ 0 =

d2y

dt2
+ (2t−2 − 3t−1)

dy

dt
− t−2y. (410)

Since (2t−2−3t−1) and −t−2 are not analytic in a neighbhorhood of t = 0 while t2(2t−2−3t−1) = 2−3t

and t2(−t−2) = −1 are, we deduce t = 0 is a regular singular point. Whence x = ∞ is a regular

singular point.

b) Since x = 0 is a regular singular point, Fuch’s result states a solution y1(x) may be expressed as
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y1(x) = xαA(x), where A is analytic, i.e., there are scalars {cn}∞n=0 such that

y1(x) =
∞∑
n=0

cnx
n+α, (411)

where we assume α is chosen such that c0 6= 0. Plugging this into our differential equation reveals

0 = x2y′′1 + (2x2 − x)y′1 + y1

=
∞∑
n=0

cn
[
(α+ n)(α+ n− 1)xn+α + 2(α+ n)xn+α+1 − (α+ n)xn+α + xn+α

]
= c0(α− 1)2xα +

∞∑
n=1

cn(α+ n− 1)2xn+α + +

∞∑
k=1

2ck−1(α+ k − 1)xk+α

= c0(α− 1)2xα +

∞∑
n=1

(α+ n− 1) [(α+ n− 1)cn + 2cn−1]xn+α.

(412)

Since this holds for all x in a neighbhorhood of the origin and c0 6= 0, the first term reveals the

indicial exponents are α1 = α2 = 1. The coefficients in the series must also be identically zero, which

yields the recurrence relation, upon plugging in α = 1,

cn = − 2

n
· cn−1, for all n ∈ N. (413)

Taking c0 = 1, we see

y1(x) =

∞∑
n=0

(−2)n

n!
xn+1 = x

∞∑
n=0

(−2x)n

n!
= x exp(−2x). (414)

Since the indicial exponent is repeated, the second linearly independent solution y2(x) of the ODE is

of the form

y2(x) = y1(x) ln(x) +

∞∑
n=0

bnx
n+1, (415)

where

bn =
∂

∂α
[cn(α)]α=1 . (416)
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Therefore, the general solution to the ODE is of the form

y(x) = d1y1(x) + d2y2(x), (417)

for some scalars d1, d2 ∈ R. However, since

y′2(x) = y′1(x) ln(x) +
y1(x)

x
+ o (1) as x −→ 0, (418)

and

y′1(0) = [(1− 2x) exp(−2x)]x=0 = 1, (419)

and y1(0) = 0, we see y′2(0) is undefined. Therefore, initial condition then reveals d2 = 0 and

1 = y′(0) = d1y
′
1(0) = d1 =⇒ y(x) = y1(x) = x exp(−2x). (420)

�
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F18.3. Consider the Chebyshev equation

d

dx

[
(1− x2)1/2 dy

dx

]
+ n2(1− x2)−1/2y = 0 for x ∈ (−1, 1), (421)

with integers n ≥ 0.

a) Find the general solution to (421).

b) Denote by Tn(x) = cos(n arccos(x)) the degree-n polynomial solution of (421). Show that the Tn(x)

satisfy the orthogonality relation

∫ 1

−1
Tn(x)Tm(x)(1− x2)−1/2 dx = 0, for m 6= n. (422)

Determine the expansion of the function g(x) = (1− x2)1/2 in terms of the Tn(x).

Solution:

a) Consider the change of variables x = cos θ where 0 < θ < π. In this case,

dy

dx
=

dy

dθ

dθ

dx
= − 1

sin θ

dy

dθ
, (423)

where we note

x = cos θ =⇒ 1 = − sin θ · dθ

dx
=⇒ dθ

dx
= − 1

sin θ
. (424)

Thus, for θ ∈ (0, π),

0 =
d

dx

[
(1− x2)1/2 dy

dx

]
+ n2(1− x2)−1/2y

=
d

dx

[
sin θ · − 1

sin θ

dy

dθ

]
+
n2y

sin θ

=
d

dx

[
−dy

dθ

]
+
n2y

sin θ

=
1

sin θ

[
d2y

dθ2
+ n2y

]
.

(425)

Since θ ∈ (0, π), the term sin θ is nonzero, thereby implying the expression in brackets is zero. The

general solution is, thus,

y = c1 sin(nθ) + c2 cos(nθ) = c1 sin(n arccos(x)) + c2 cos(n arccos(x)), (426)
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for some scalars c1, c2 ∈ R.

b) Using the same change of variables as before, for m 6= n,

0 =

∫ 1

−1
Tn(x)Tm(x)(1− x2)−1/2 dx

= −
∫ 0

π
cos(nθ) cos(mθ)dθ

=
1

2

∫ π

0
cos((m+ n)θ) + cos((m− n)θ) dθ

=
1

2

[
sin((m+ n)θ)

m+ n
+

sin((m− n)θ)

m− n

]π
θ=0

= 0,

(427)

where we note

x = cos θ =⇒ dx = − sin θdθ =⇒ −dθ =
dx

sin θ
= (1− x2)−1/2dx. (428)

Let us now consider the expansion of g(x). We seek to show identify scalars {cn}∞n=0 such that

g(x) =

∞∑
n=0

cnTn(x). (429)

We proceed by working with the variable θ, considering the Sturm-Liouville problem

d2z

dθ2
+ n2z = 0, z′(0) = z′(π) = 0. (430)

For each n, the general solution is of the form

z = α1 sin(nθ) + α2 cos(nθ), (431)

and the boundary conditions imply α1 = 0 and n is an integer. By Sturm-Liouville theory, the resulting

eigenfunctions {cos(nθ)}∞n=0 form an eigenbasis and are orthogonal with respect to the scalar product

〈f1, f2〉 :=

∫ π

0
f1(θ)f2(θ) dθ. (432)
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Therefore, there exists scalars {dn}∞n=0 such that sin θ may be expressed on [0, π] via

sin θ =
∞∑
n=0

dn cos(nθ). (433)

By the orthogonality of the eigenfunctions, we have the standard result for the coefficients

dn =
〈sin θ, cos(nθ)〉
〈cos(nθ), cos(nθ)〉

=

∫ π
0 sin(θ) cos(nθ) dθ∫ π

0 cos2(nθ) dθ
, for all n ≥ 0. (434)

However, for x ∈ (−1, 1) and the change of variables x = cos θ, we see θ ∈ (0, π), and so

g(x) =
√

1− cos2 θ = | sin θ| = sin θ =

∞∑
n=0

dn cos(nθ) =

∞∑
n=0

dnTn(x). (435)

This verifies (429), taking cn = dn, and the proof is complete.

�
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F18.4. For a bounded domain Ω in Rn with smooth boundary, consider the parabolic PDE
ut −∆u = (1− u)+ in Ω× (0,∞),

u = ` on ∂Ω× (0,∞),

u = g on Ω× {t = 0},

(436)

where g is a smooth function that vanishes on ∂Ω.

a) Show that if `(x), g(x) ≤ 1, then u(x, t) ≤ 1 for all t > 0.

b) Supposing18 instead that g does not vanish along ∂Ω and that g(x) > 1 and `(x) > 1, show that

u(x, t) > 1 for all t > 0.

Solution:

a) Fix T > 0 and take ΩT := Ω× (0, T ] and ΓT to be the parabolic boundary of ΩT . Let ε > 0 and set

v := u − εet. Since ΩT is compact and v is continuous, v attains its supremum over ΩT . By way of

contradiction, suppose this supremum is at least unity. By the continuity of v, it follows that there

exists a point in ΩT at which v = 1. Let (x?, t?) ∈ ΩT be such that v(x?, t?) = 1, with t? the first

time at which this occurs. Note t? > 0 since

v(x, t) = g(x)− εe0 ≤ 1− ε < 1 on Ω× {t = 0}. (437)

And, x? ∈ Ω since

v(x, t) = `(x)−εe
t? ≤ 1− εet? ≤ 1− ε < 1 on ∂Ω× (0,∞). (438)

Therefore, (x?, t?) ∈ ΩT−ΓT = ΩT . By the fact t? is the first time at which v = 0, we see vt(x
?, t?) ≥ 0.

Since x? is a local maximizer of v(·, t?), it follows that ∆v(x?, t?) = 0. Whence, at (x?, t?),

0 ≤ vt −∆v = ut −∆v − εet? = (1− u)+ − εet
?

=
(
−εet?

)
+
− εet? = −εet? < 0, (439)

where the third equality holds since at the indicated point 1 = v = u− εet? . This inequality implies

18We believe the original prompt was in error here. For g could not be smooth and vanish at the boundary ∂Ω while
simultaneously be greater than unity everywhere in Ω. We have rewritten what we think it should have stated.

108 Last Modified: 4/26/2019



ADE Qual Notes Heaton

0 < 0, a contradiction. Therefore,

sup
ΩT

v < 1, (440)

and so

u < 1 + εet ≤ 1 + εeT in ΩT . (441)

Since ε > 0 was arbitrarily chosen, we may let ε −→ 0+ to deduce

u ≤ 1 in ΩT . (442)

And, because this result holds for arbitrary T > 0, we may let T −→∞ to deduce u ≤ 1 for all times,

as desired.

b) Let T > 0 be given and again set ΩT := Ω× (0, T ] and ΓT to be the parabolic boundary. Since ΓT is

compact and u is continuous, it follows from the hypotheses given that

inf
ΓT

u > 1. (443)

Choose ε such that 0 < ε < infΓT
u− 1, and then define v := u− εe−t. It then follows that

v = u− εe−t ≥ u− ε > 1 on ΓT . (444)

Since v is continuous and ΩT is compact, v attains its infimum over ΩT . By way of contradiction,

suppose the infimum is less than or equal to unity. By (444), it follows that any minimizer of v over

ΩT is contained in ΩT . By the continuity of v, it follows that there exists a point in ΩT at which

v = 1. Let (x̃, t̃) be such a point with t̃ the first time at which this occurs. Then vt(x̃, t̃) ≤ 0 and,

because x̃ is a local minimizer of v(·, t̃), we deduce ∆v(x̃, t̃) ≥ 0. Therefore, at the minimizer,

0 ≥ vt −∆v = ut −∆u+ εe−t̃ = (1− u)+ + εe−t̃ =
(
−εe−t̃

)
+︸ ︷︷ ︸

=0

+εe−t̃ > 0, (445)

a contradiction. Thus, the minimizer of v over ΩT exceeds unity, and so

inf
ΩT

u = inf
ΩT

v + εe−t ≥
(

inf
ΩT

v

)
+ εe−T > inf

ΩT

v > 1 in ΩT . (446)

Because this holds for arbitrary T > 0, it follows that, for all (x, T ) ∈ Ω × (0,∞), u(x, T ) > 1, as

desired. �
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F18.5. Consider the following initial-boundary problem for u = u(x, t) in the domain {x > 0} × {t > 0}:


ut − uxx + au = 0 in {x > 0} × {t > 0},

u = f on {x > 0} × {t = 0},

u = g on {x = 0} × {t > 0},

(447)

where f(x) and g(t) are continuous functions with compact support and a is a constant. Find an ex-

plicit solution of this problem.

Solution:

We proceed19 by defining a new function and then performing an odd reflection. Set v(x, t) := u(x, t)eat.

Then 
vt − vxx = 0 in {x > 0} × {t > 0},

v = f on {x > 0} × {t = 0},

v = geat on {x = 0} × {t > 0}.

(448)

Then define w(x, t) := v(x, t) − f(x) − g(t). Because f : (0,∞) → R and g : (0,∞) → R are com-

pactly supported, f(0) = g(0) = 0. This implies

w(x, 0) = v(x, 0)−f(x)−g(0) = f(x)−f(x)−0 = 0 and w(0, t) = v(0, t)−f(0)−g(t) = g(t)−0−g(t) = 0.

(449)

Now define the odd reflection w̃(x, t) by

w̃(x, t) :=


w(x, t) if x > 0,

−w(−x, t) if x < 0,

0 if x = 0.

(450)

Differentiating reveals

w̃t(x, t)− w̃xx(x, t) = wt(x, t)− wxx(x, t) = φ(x, t) in {x > 0} × {t > 0}, (451)

and

w̃t(x, t)− w̃xx(x, t) = −wt(−x, t) + wxx(−x, t) = φ(x, t) in {x < 0} × {t > 0}, (452)

19See Problem 2.15 in Evans’ text on page 16 and also the solution to S14.1.
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where

φ(x, t) :=


−(geat)′ + f ′′(x) if x > 0,

(geat)′ − f ′′(−x) if x < 0,

(453)

and we momentarily assume f and g are smooth. This assumption may be relaxed upon arriving at our

final expression for u(x, t). Compiling our results, we may write


w̃t − w̃xx = φ in R× (0,∞),

w̃ = 0 on R× {t = 0},

w̃ = 0 on {x = 0} × (0,∞).

(454)

For each t ∈ (0,∞), observe, for fixed s ∈ (0, t),

w̃(x, t; s) :=

∫ ∞
−∞

Φ(x− ξ, t− s)φ(ξ, s) dξ (455)

forms a solution to 
w̃t(·; s)− w̃xx(·; s) = 0 in R× (s,∞),

w̃(·; s) = 0 on R× {t = s},

w̃(·; s) = φ(·, s) on {x = 0} × (s,∞),

(456)

where Φ is the fundamental solution to the heat equation:

Φ(x, t) :=
1√
4πt

exp

(
−x

2

4t

)
. (457)

Duhamel’s principle asserts

w̃(x, t) =

∫ t

0
w̃(x, t; s) ds =

∫ t

0

∫ ∞
−∞

Φ(x− ξ, t− s)φ(ξ, s) dξds (458)

Substituting in the definition of φ, we see

w̃(x, t) =

∫ t

0

[∫ ∞
0

Φ(x− ξ, t− s)
[
f ′′(ξ)− (g(s)eas)′

]
dξ +

∫ 0

−∞
Φ(x− ξ, t− s)

[
−f ′′(−ξ) + (g(s)eas)′

]
dξ

]
ds

(459)

An explicit solution (which we currently neglect to fully write down) is then given by integrating by parts
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to take the derivatives off of f and g and place them onto Φ, which is smooth. Then, in {x > 0}×{t > 0},

u(x, t) = e−atv(x, t) = e−at (w(x, t) + f(x) + g(t)) = e−at (w̃(x, t) + f(x) + g(t)) . (460)

�
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F18.6. For a bounded domain Ω in Rn and for

u ∈ A := {w ∈ C1(Ω) : w|∂Ω = 0,

∫
Ω
w = 1}, (461)

consider the energy

E(u) :=

∫
Ω

√
1 + |Du|2 dx. (462)

a) Show that E(u) has at most one minimizer among u ∈ A.

b) Let Ω := {|x| < 1} and suppose that u? minimizes E(u) over A. Show that u? is a radial function.

Solution:

a) Let u, v ∈ A. Assume u and v are distinct minimizers of E over A. It suffices to show u = v. Note

1
2(u+ v) ∈ A. Define f(α) := (1 + α2)1/2 and observe

f ′(α) = α(1 + α2)−1/2 =⇒ f ′′(α) = (1 + α2)−1/2 − α2(1 + α2)−3/2 = (1 + α2)−3/2 > 0, (463)

which shows f is strictly convex and strictly increasing for positive arguments. Therefore,

f

(
1

2
|Du+Dv|

)
≤ f

(
1

2
|Du|+ 1

2
|Dv|

)
≤ 1

2
f(|Du|) +

1

2
f(|Dv|), (464)

where the final inequality is strict whenever |Du| 6= |Dv|. Consequently,

E

(
1

2
(u+ v)

)
=

∫
Ω
f

(
1

2
|Du+Dv|

)
dx ≤ 1

2
E(u) +

1

2
E(v) = E(u). (465)

Because u and v are minimizers, the left hand side of (465) is bounded below by E(u). This implies

∫
Ω
f

(
1

2
|Du+Dv|

)
dx =

1

2

∫
Ω
f(|Du|) + f(|Dv|) dx, (466)

and so

0 =

∫
Ω

1

2
[f(|Du|) + f(|Dv|)]− f

(
1

2
|Du+Dv|

)
︸ ︷︷ ︸

≥0

dx. (467)

It follows from undergraduate analysis that the integrand is identically zero, from which (464) implies
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|Du| = |Dv| in Ω, and so

f

(
1

2
|Du+Dv|

)
= f(|Du|) in Ω. (468)

However,

f

(
1

2
|Du+Dv|

)
=

(
1 +

1

4
|Du+Dv|2

)1/2

=

(
1 +

1

4
|Du|2 +

1

4
|Dv|2 +

1

2
|Du|Dv| cos θ

)1/2

=

(
1 +

1 + cos θ

2
|Du|2

)1/2

= f

(√
1 + cos θ

2
|Du|

)
,

(469)

where θ ∈ [0, π] denotes the angle between Du and Dv and the third equality holds since |Du| = |Dv|

in Ω. Thus,

f(|Du|) = f

(√
1 + cos θ

2
|Du|

)
in Ω, (470)

which, by the fact f is strictly increasing for positive arguments, can only be the case when cos θ = 1

everywhere in Ω, thereby implying Du and Dv are parallel. Since Du and Dv are parallel and with

equal magnitude in Ω, we see Du = Dv in Ω. This shows u = v + c in Ω for some constant c ∈ R.

However,

1 =

∫
Ω
u dx =

∫
Ω
v + c dx = 1 +

∫
Ω
c dx = 1 + c|Ω| =⇒ c = 0. (471)

Therefore, u = v in Ω, and the proof is complete.

b) Let Q ∈ Rn×n be an orthogonal matrix. Define v(x) := u?(Qx). Using the tensor notation for deri-

vatives and the summation convention, we see

vi = u?jQji =⇒ |Dv|2 = vivi = (u?jQji)(u
?
kQki) = u?ju

?
kQjiQ

T
ik = u?ju

?
kδjk = u?ju

?
j = |Du?|2. (472)

And, ∫
Ω
v(x) dx =

∫
Ω
u?(Rx) dx =

∫
Ω
u?(y) dy = 1, (473)

where we use change of variables y = Rx and note the orthogonality of R implies |R| = 1, and so

dy = dx, and RΩ = Ω since Ω is rotationally invariant. We additionally see v(x) = u(Rx) = 0 on ∂Ω
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since x ∈ ∂Ω implies Rx ∈ ∂Ω, by the symmetry of Ω. Thus, v ∈ A. Furthermore, (472) implies

E(v) =

∫
Ω
f(|Dv|) dx =

∫
Ω
f(|Du?|) dx = E(u?). (474)

By our result in a), the minimizer of E over A is unique. Therefore, v = u? and, as Q was an arbitrary

orthogonal matrix, we conclude u? is radial.

�
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Remark: Now suppose u? minimizes E over A and v is a perturbation function, i.e., v ∈ C1(Ω) and

v|∂Ω = 0. Then

δE(u?, v) =
d

dε
[E(u+ εv)]ε=0 =

[∫
Ω

f ′(|Du+ εv|) · Du+ εDv

|Du+ εDv|
·Dv dx

]
ε=0

=

∫
Ω

f ′(|Du|) · Du
|Du|

·Dv dx, (475)

which may be simplified as

δE(u?, v) =

∫
Ω

Du√
1 + |Du|2

·Dv dx. (476)

Define

J(u) :=

∫
Ω
u dx, (477)

and so

δJ(u?, v) =
d

dε
[J(u? + εv)]ε=0 =

d

dε

[∫
Ω
u? + εv dx

]
ε=0

=

[∫
Ω
v dx

]
ε=0

=

∫
Ω
v dx. (478)

By Lagrange’s theorem of multipliers, there exists λ ∈ R such that, for all test functions v,

δE(u?, v) = λδJ(u?, v), (479)

which implies

0 =

∫
Ω

Du√
1 + |Du|2

·Dv − λv dx =

∫
Ω

(
Du√

1 + |Du|2
− λx

)
·Dv dx. (480)

Because this holds for an arbitrary test function v, we see

Du(x) = λ
√

1 + |Du|2x in Ω. (481)

This could be used to show u is radial. Also, this implies

|Du|2 = (1 + |Du|2)|x|2 =⇒ |Du|2 =
|x|2

1− |x|2
=⇒ f(|Du|) =

(
1 +

|x|2

1− |x|2

)1/2

=
1√

1− |x|2
, (482)

and so

E(u) =

∫
B(0,1)

1√
1− |x|2

dx. (483)

4
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F18.7.

a) Consider the linear equation

ut + aux = 0, (484)

where a > 0. Solve the initial-boundary value problem for this PDE in the domain {x > 0}×{t > 0}

with boundary conditions u(x, 0) = 0, u(0, t) = 1. Draw a characteristic diagram for this problem (a

graph of the solution in the xt plane).

b) Consider the nonlinear equation

ut + (u3)x = 0, (485)

for viscous flow down an inclined plane. Solve the initial-boundary value problem for this PDE in

the domain {x > 0} × {t > 0} with boundary conditions u(x, 0) = 0 and u(0, t) = 1. Here x = 0

corresponds to a gate that release a fluid with height u(0, t). Draw a characteristics diagram for this

problem.

c) Consider the same problem as in b), but now with the boundary conditions u(x, 0) = 1 and u(0, t) = 0,

corresponding to a uniform flow with the gate closing at time t = 0. Find a solution that is continuous

in the domain {x ≥ 0} × {t > 0}. Draw a characteristics diagram for this problem. Is the solution

uniformly continuous? Explain your answer.

Solution:

a) We proceed by using the method of characteristics. Define F (p, q, z, x, t) = q + ap. Taking q = ut,

z = u, and p = ux, we see F = 0 and obtain the system of characteristic ODE:
ẋ(s) = Fp = a, x(0) = x0,

ṫ(s) = Fq = 1, t(0) = t0,

ż(s) = Fpp+ Fqq = ap+ q = 0, z(0) = z0,

(486)

where z0 = 0 if the characteristic originates along the x axis and z0 = 1 if the characteristic ori-

ginates along the t axis. This implies t = t0 + s, z is constant along characteristics, and

x(s) = x0 +

∫ s

0
ẋ(τ) dτ = x0 +

∫ s

0
a dτ = x0 + as = x0 + a(t− t0). (487)
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This shows the characteristics are linear and with identical slope, proceeding to the right in time. For

a point (x, t) in the first quadrant, we take (x0, t0) to be the boundary point along the first quadrant

which is connected to (x, t) with the line segment connecting the two having slope matching the

characteristics. If x > at, then t0 = 0 and the initial condition implies u(x, t) = 0. If x < at, then

x0 = 0 and the boundary condition implies u(x, t) = 1. In summary, in {x > 0}×{t > 0} the solution

to the PDE is

u(x, t) =


1 if x < at,

0 if x > at.

(488)

The desired characteristic diagram is in Figure 15.

s(t) = at

t

x

Figure 15: Characteristic Diagram for F18.7a.

b) Again we proceed by the method of characteristics. Define F (p, q, z, x, t) = q + 3z2p. Taking q = ut,

z = u, and p = ux yields F = 0 and gives rise to the system of characteristic ODE:
ẋ(s) = Fp = 3z2, x(0) = x0,

ṫ(s) = Fq = 1, t(0) = t0,

ż(s) = Fpp+ Fqq = 3z2p+ q = 0, z(0) = z0,

(489)

where z0 is as in a). This implies t = t0 + s and z is constant along characteristics, from which
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we deduce

x(s) = x0 +

∫ s

0
ẋ(τ) dτ = x0 +

∫ s

0
3z2(τ) dτ = x0 + 3sz0 =


x0 + 3s if x0 = 0,

x0 if x0 > 0.

(490)

Consequently, the characteristics crash and a shock occurs at (x, t) = (0, 0). The Rankine-Hugoniot

condition implies that if the shock is parameterized by (x̃(t), t) then the velocity σ = ˙̃x of the shock

curve satisfies

σ =
f(u`)− f(ur)

u` − ur
=
u3
` − u3

r

u` − ur
=

13 − 0

1− 0
= 1, (491)

where u` and ur are the limiting functions values approaching the shock from the left and right,

respectively. With the fact x̃(0) = 0, this implies x̃(t) = t. Consequently, we deduce, in {x >

0} × {t > 0},

u(x, t) =


1 if x < t

0 if x > t.

(492)

The characeristic diagram is given in Figure 16.

s(t) = tt

x

Figure 16: Characteristic Diagram for F18.7b.

c) In this case, because u` < ur, a rarefaction wave occurs. Note we have the same system of characteristic

ODE as in b). This implies t = t0 + s and z is constant along characteristics, from which we deduce,
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with the new initial/boundary conditions,

x(s) = x0 +

∫ s

0
ẋ(τ) dτ = x0 +

∫ s

0
3z2(τ) dτ = x0 + 3sz0 =


x0 if x0 = 0,

x0 + 3s if x0 > 0.

(493)

This tells us the solution along the t axis and for x > 3t, but not in the remaining portion of the first

quadrant. We look for a solution of the form u(x, t) = v(x/t). Plugging this into the PDE implies

(with v = v(x/t))

0 = ut + 3u2ux = v′ · − x
t2

+ 3v2v′ · 1

t
=
v′

t

[
3v2 − x

t

]
=⇒ v

(x
t

)
=
( x

3t

)1/2
, (494)

where the implication holds, assuming v′ 6= 0, and the square root is positive since u = 1 along x = 3t.

Indeed, for our choice of v, this assumption holds. Therefore, we conclude, in {x ≥ 0} × {t > 0},

u(x, t) =


√
x/3t if 0 < x ≤ 3t,

1 if x > 3t.

(495)

The characteristic diagram is provided in Figure 17.

x = 3t

t

x

Figure 17: Characteristic Diagram for F18.7c.

Lastly, note u is continuous in the domain {x ≥ 0} × {t > 0}. By way of contradiction, suppose u is
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also uniformly continuous and let ε = 1/2. Then there exists δ > 0 such that

‖(x1, t1)− (x2, t2)‖ < δ =⇒ |u(x1, t1)− u(x2, t2) < ε =
1

2
. (496)

However, consider the point (x1, t1) = (δ/2, δ/6) at which u = 1 and (x2, t2) = (0, δ/6) at which

u = 0. Then

‖(x1, t1)− (x2, t2)‖ =
δ

2
< δ =⇒ 1 = |1− 0| = |u(x1, t1)− u(x2, t2)| < 1

2
, (497)

a contradiction. Thus, u is not uniformly continuous.

�
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F18.8. The equation of motion of a vibrating beam is

− cmutt = EIuxxxx, (498)

where u is the displacement of the beam as a function of its position along its axis, the constant cm = ρA is

the linear mass density of the beam, E is the elastic modulus, and I is the moment of inertia. If the beam

is simply supported at its ends, it satisfies the boundary conditions u(0, t) = u(L, t) = 0 (no displacement

at its ends) and uxx(0, t) = uxx(L, t) = 0 (zero bending moments).

a) Compute the solution of this problem, given the initial displacement u(x, 0) = f(x) and initial velocity

ut(x, 0) = g(x).

b) Find the solution of the vibrating-string equation

utt = c2uxx (499)

with fixed boundary conditions u(0, t) = u(L, t) = 0 and initial conditions u(x, 0) = f(x), ut(x, 0) =

g(x). Compare how the spectrum of the normal modes scales with the length of the string versus the

length of the beam.

Solution:

a) We proceed by using separation of variables. Assume u(x, t) = f(x)φ(t). The provided PDE implies

− αfφ′′ = f ′′′′φ =⇒ φ

φ′′
= −α f

f ′′′′
, (500)

where α := cm/EI > 0. Since the left and right hand sides are functions of independent variables,

there must exist µ ∈ R such that

µ = −α f

f ′′′′
=⇒ −µ

α
f ′′′′ = f. (501)

Then observe

∫ L

0
ff ′′′′ dx =

∫ L

0
−f ′f ′′′ dx+

[
ff ′′′

]L
0

=

∫ L

0
(f ′′)2 dx+

[
ff ′′′ − f ′f ′′

]L
0︸ ︷︷ ︸

=0

, (502)
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and so ∫ L

0
f2 dx = −µ

α

∫ L

0
ff ′′′′ dx = −µ

α

∫ L

0
(f ′′)2 dx. (503)

If f ′′ = 0 in (0, L), then f is linear, from which the boundary conditions imply f is identically

zero. This results in obtaining the trivial solution u ≡ 0. Assuming u is not the trivial solution, it

follows that f is nonzero and µ < 0 so that f − |µ/α|f ′′′′ = 0. Letting γ := (−µ/α)1/4, each linearly

independent solution is of the form f = exp(ωγx), where ω ∈ {±1,±i} is a fourth root of unity. Using

Euler’s formula for sines and cosines and using hyperbolic sine and cosine also (in place of exp(γx)

and exp(−γx)), we may write that f satisfies

fk(x) = c1 sin(γx) + c2 cos(γx) + c3 sinh(γx) + c4 cosh(γx), (504)

for some scalars c1, c2, c3, c4 ∈ R. The condition u(0, t) = 0 implies c2 + c4 = 0. The condition

uxx(0, t) = 0 implies γ2(−c2 + c4) = 0. Thus, c2 = c4 = 0. The conditions u(L, t) = 0 and

uxx(L, t) = 0, respectively, imply

0 = c1 sin(γL) + c3 sinh(γL) and 0 = γ2 [−c1 sin(γL) + c3 sinh(γL)] . (505)

This implies either that c1 = c3 = 0 or that sin(γL) = 0 and c3 = 0. The first case cannot hold since

this would yield the trivial solution. Consequently, we see

f(x) = c1 sin(γx), (506)

where γ = kπ/L for some nonnegative integer k, which implies

kπ

L
= γ =

(
−µk
α

)1/4
=⇒ µk = −α

(
kπ

L

)1/4

. (507)

Because this holds for an arbitrary k, we may expand a general function f on [0, L] via an odd periodic

extension of f onto [−L,L] with sine functions. That is,

f(x) =

∞∑
k=0

dkfk(x) =

∞∑
k=0

dk sin

(
kπx

L

)
, (508)
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where each coefficient is given by

dk :=

∫ L
0 f(x) sin(kπx/L) dx∫ L

0 sin(kπx/L)2 dx
. (509)

And, the associated φk satisfy

φk
φ′′k

= µk =⇒ φk(t) = b1,k sin(
√
−µkt) + b2,k cos(

√
−µkt), (510)

for some scalars b1,k, b2,k ∈ R. Our assumption that u(x, 0) = f(x) implies φk(0) = 1, and so b2,k = 1.

And, from the condition ut(x, 0) = g(x) we take

βk = φ′k(0) (511)

where

g(x) =
∞∑
k=0

βkfk(x), βk :=

∫ L
0 g(x) sin(kπx/L) dx∫ L

0 sin(kπx/L)2 dx
(512)

This can be used to determine b1,k. Having this, we may write φk(t). Compiling our results, we write

u(x, t) =
∞∑
k=0

dkfk(x)φk(t). (513)

b)

�
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2018 Spring

S18.1. Consider the following non-dimensionalized model for glycolysis:

ẋ = −x+ ay + x2y,

ẏ = b− ay − x2y,
(514)

where x ≥ 0 is the concentration of ADP, y ≥ 0 is the concentration of F6P, and a, b > 0 are kinetic

parameters. Determine the equilibrium points and their linear stability, and show that a periodic orbit

exists if and only if a and b satisfy an appropriate condition (which you should determine). Draw the phase

portrait in this case.

Solution:

First20 we find the nullclines. The first equation reveals ẋ = 0 on the curve y = x/(a+ x2) and the second

equation reveals ẏ = 0 on the curve y = b/(a + x2). These null clines are shown in the following figure.

Note the direction of the flow shown is given by the sign of ẋ and ẏ in the different regions.

Figure 18: Snippet from Strogatz’s text (p. 206)

We claim the region enclosed by (0, b/a), (b, b/a), straight with slope -1 to the to the null cline y = x/(a+x)2,

20This solution follows directly from Strogatz’s Nonlinear Dynamics and Chaos (pp. 205–208).
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and then straight down to the x-axis, back to the origin, and up to (0, b/a). Observe

ẋ− (−ẏ) = −x+ ay + x2y + (b− ay − x2y) = b− x =⇒ −ẏ > ẋ if x > b. (515)

This implies the vector fields points inward on the diagonal line, because dy/dx < −1, and therefore the

vectors are steeper than the diagonal line. Thus the region is a trapping region, as claimed. Now, we must

find conditions under which the fixed point in this region is a repeller. Then we may consider the trapping

region that is punctured by removing this point since such a point drive all neighboring trajectories into

the trapping region. Since this region is free of fixed points, we may then apply the Poincaré-Bendixson

theorem.

The Jacobian J(x, y) for the system is

J(x, y) =

 ∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y

 =

 2xy − 1 a+ x2

−2xy −(a+ x2)

 . (516)

At a nonzero fixed point, adding our two equations yields

0 = 0 + 0 =
(
−x+ ay + x2y

)
+
(
b− ay − x2y

)
= b− x =⇒ x = b. (517)

This, in turn, implies

0 = −b+ ay + b2y =⇒ y =
b

a+ b2
. (518)

Thus, the single fixed point of the system is at (x∗, y∗) := (b, b/(a+ b2)). Then

|J(x, y)| = −(2xy − 1)
(
a+ x2

)
− (−2xy)

(
a+ x2

)
=
(
a+ x2

)
(2xy − 2xy + 1) = a+ x2, (519)

which implies |J(x∗, y∗)| = a+ b2 > 0. Furthermore, the trace τ of J(x∗, y∗) is

τ = −b
4 + (2a− 1)b2 + (a+ a2)

a+ b2
, (520)

which implies

λ =
τ ±

√
τ2 − 4(a+ b2)

2
. (521)
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Consequently, the fixed point is unstable for τ > 0 (i.e., a repeller) and stable for τ < 0. We see τ = 0

precisely when

b2 =
1

2

(
1− 2a±

√
1− 8a

)
, (522)

which defines a curve in (a, b) space yielding regions of parameters corresponding to a stable limit cycle

existing or not. The Poincaré-Bendixson theorem of nonlinear dynamics tells us if a trajectory is confined

to a closed, bounded region that contains no fixed points, then the trajectory must eventually approach a

closed orbit. Whence a periodic orbit exists precisely when a and b are chosen such that τ > 0.

Figure 19: Plot of the phase plane with a = 0.2 and b = 0.6, which implies τ < 0.

�
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S18.3. Consider the ordinary differential equation

x3y′′ + y = 0. (523)

a) Show that the ODE has a regular singular point at x0 =∞ and determine its indicial components.

b) The leading behavior of a particular solution to (523) is t(x) ∼ x as x −→ ∞. By considering the

largest terms in a singular series solution, determine the next largest term in the expansion of y(x)

for large positive x.

Solution:

a) To classify the point x0 = ∞, we analytically map the point at infinity into the origin using the

inversion transformation x = 1/t. We must show 0 is a regular singular point of the transformed

ODE. Observe dx = −t−2dt so that

dy

dx
=

dy

dt

dt

dx
= −t2 dy

dt
=⇒ dy2

dx2
= t4

d2y

dt2
+ 2t3

dy

dt
. (524)

This transforms the given ODE to

0 =
1

t3
·
[
t4

d2y

dt2
+ 2t3

dy

dt

]
+ y = t

d2y

dt2
+ 2

dy

dt
+ y. (525)

Dividing by t on each side yields

0 =
d2y

dt2
+

2

t

dy

dt
+
y

t
=

d2y

dt2
+ p1(t)

dy

dt
+ p0(t)y, (526)

where p1(t) = 2/t and p0(t) = 1/t. Note p1 and p0 are not analytic in a neighborhood of 0; however,

(t− 0)p1(t) = 1 and (t− 0)2p0(t) = t are analytic in a neighborhood of 0. Thus 0 is a regular singular

point of (526). Therefore x0 =∞ is a regular singular point of (523).

Since t = 0 is a regular singular point, Fuch’s theorem asserts there exists a Frobenius series solution

y, i.e., y is of the form

y =

∞∑
k=0

ckt
k+α =

∞∑
k=0

ckx
−(k+α), (527)

128 Last Modified: 4/26/2019



ADE Qual Notes Heaton

where α is chosen such that c0 6= 0. This implies

0 = y + 2
dy

dt
+ t

d2y

dt2

=

∞∑
k=0

ck
[
tk+α + 2(k + α)tk+α−1 + (k + α)(k + α− 1)tk+α−1

]
=

∞∑
k=0

ckt
k+α + c0α(α+ 1)tα−1 +

∞∑
n=0

cn+1 [2(n+ 1 + α) + (n+ 1 + α)(n+ α)] tn+α

= c0α(α+ 1)tα−1 +

∞∑
k=0

[ck + (k + 1 + α)(k + 2 + α)ck+1] tk+α,

(528)

where the equalities come from reindexing the series with n = k − 1. Equating coefficients reveals

α(α+ 1) and 0 = ck + (k + 1 + α)(k + 2 + α)ck+1, for all k ≥ 0, (529)

where we note we assumed c0 6= 0. This implies the indicial components21 are α1 = 0 and α2 = −1.

b) Observe22 our hypothesis implies y(x) ∼ x+δ(x) as x −→∞, where |δ| � x as x −→∞. Consequently,

x+ δ ∼ y = −x3y′′ = −x3δ′′ =⇒ x ∼ −x3δ′′ as x −→∞. (530)

This implies

δ′′ ∼ −x−2 =⇒ δ ∼ ln(x) + c1x+ c2 as x −→∞. (531)

Because |δ| � x as x −→∞, it follows that c1 = 0. Note constant functions are solutions to the ODE,

and so we may subtract such solutions from our particular solution and still obtain a solution, i.e.,

we may take c2 = 0. All that remains is to verify taking δ(x) = ln(x) forms a consistent dominant

balance. Indeed,

lim
x→∞

x

ln(x)
= lim

x→∞

1

1/x
= lim

x→∞
x =∞. =⇒ | ln(x)| � x as x −→∞. (532)

From this, we conclude the next largest term is δ(x) = ln(x).
�

21We presume the prompt meant with the phrase “indicial components” what Bender and Orzsag meant by “indicial
exponents”. See, e.g., §3.3 of their text.

22This question is strikingly similar to Problem 3.22b in Bender and Orszag’s text.
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Remark: We wish to draw further insights regarding the previous problem. A solution to (523) given by

y1 =
∞∑
k=0

ckt
k, (533)

where we take α = α1 = 0 in the recurrence relation in (529). However, note N = α1 − α2 = 1 and using

the recurrence relation in (529) with α = α2 reveals

0 = 0c1 =

(N + 1 + α2)︸ ︷︷ ︸
=0

(N + 2 + α2)cN


N=1

= −c0, (534)

which cannot be the case for a Frobenius series since we assume c0 6= 0. Thus, there is only one solution

to the ODE in Frobenius form. Following Bender and Orszag’s text, we see the second solution is of the

form

y2 =

∞∑
k=0

dkt
k+α2 − ∂

∂α
[y(x, α)]α=α1

=

∞∑
k=0

dkt
k+α2 − y(t, α1) ln(t)−

∞∑
k=0

bkt
t+α1

= y1(t) ln(t) +
∞∑
k=0

qkt
k−1,

(535)

where

y(t, α) =
∞∑
k=0

ck(α)tk+α and bk =
∂

∂α
[ck(α)]α=α1

, (536)

and
∞∑
k=0

qkt
k−1 =

∞∑
k=0

dkt
k+α2 −

∞∑
k=0

bkt
t+α1 . (537)

We may take c0 = d0 = 1. Thus, the general solution is of the form

y(t) = β1y1(t) + β2y2(t), (538)
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for scalars β1, β2 ∈ R. Assume y ∼ 1/t as t −→ 0+ and observe, as t −→ 0+,

t−1 ∼ y ∼ β1 [c0 + c1t] + β2

[
(c0 + c1t) ln(t) +

(
q0t
−1 + q1

)]
= β2q0t

−1 + β2c0 ln(t) + (β1c0 + β1c1 + β2c1t ln(t) + β2q1)

∼ β2q0t
−1 + β2c0 ln(t)

= β2

(
t−1 + ln(t)

)
,

(539)

where we may ignore the omitted terms (asymptotically) since our assumption implies β2 = 1. Con-

sequently, we see

y ∼ t−1 + ln(t) as t −→ 0+ =⇒ y ∼ x+ ln(x−1) = x− ln(x) as x −→∞. (540)

This proves the next largest term in the expansion of y(x) for large positive x is − ln(x). In fact, upon

consulting (539), we see the succeeding largest term in the expansion will be a constant since

β2c1t ln(t) = 1 · −c0

2
t ln(t) = −1

2
t ln(t) = t ln(t−1/2) −→ 0 as t −→ 0+. (541)

4
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S18.4. We seek a solution u : Ω× [0,∞)→ R of the PDE


ut −∆u+ u‖Du‖ = 0 in Ω× (0,∞),

u = f on ∂Ω× [0,∞),

u = g on Ω× {t = 0},

(542)

where Ω ⊂ R
d is the interior of a connected compact set, and ‖ · ‖ is the usual Euclidean norm. As-

sume the boundary and initial conditions are smooth. Show that there is at most one C1,2(Ω×R) solution

of this PDE.23

Solution:

Let u and v be C1,2(Ω× (0,∞)) solutions of the given PDE, and set w := u− v. Fix a time T > 0. Then

take ΩT := Ω× (0, T ] and let ΓT be the parabolic boundary of ΩT so that


wt −∆w = v‖Dv‖ − u‖Du‖ in ΩT ,

w = 0 on ΓT .

(543)

Now fix ε > 0 and define w̃ := w + εet. Since ΩT is compact, the continuous function w̃ attains its

infimum over ΩT . By way of contradiction, suppose the infimum of w̃ is nonpositive. By the continuity of

w̃, it follows that there exists a first time t? and and a point x? ∈ Ω such that w̃(x?, t?) = 0. Note t? > 0

and x? ∈ Ω since

w̃ = w + εet ≥ w + εet = εet ≥ ε > 0 on ΓT . (544)

Thus, (x?, t?) ∈ ΩT . Consequently, wt(x
?, t?) ≥ 0 and, because x? is a local minimizer of w(·, t?),

∆w(x?, t?) ≥ 0 and, at (x?, t?),

0 = Dw̃ = Dw = Du−Dv =⇒ Du = Dv. (545)

Combining these facts, we see, at (x?, t?),

0 ≥ w̃t−∆w̃ = wt−∆w+ εet
?

= v‖Dv‖− u‖Du‖+ εet
?

= −w‖Du‖+ εet
?

= (‖Du‖+ 1) εet
?
> 0, (546)

a contradiction. The final equality holds since, at the given point, 0 = w̃ = w + εet
?
. The contradiction

23We presume the authors meant to only include nonnegative times.
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proves w̃ > 0 in ΩT . Therefore,

w ≥ −εet ≥ −εeT in ΩT . (547)

Since ε > 0 was arbitrary, we may let ε −→ 0+ to deduce w ≥ 0 in ΩT . Because this holds for arbitrary

T > 0, we may then let T −→∞ to deduce

w ≥ 0 =⇒ u ≥ v in Ω× [0,∞). (548)

We may repeat at analogous argument, swapping the roles of u and v to deduce u ≤ v, from which it

follows that u = v. Whence any solution to the PDE is necessarily unique. �
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S18.5. Consider entropy solutions u(x, t) : R× (0,∞)→ R of the flux conservation equation

ut + f(u)x = 0 (549)

with initial condition

u(x, 0) =


x if x ∈ (0, 1),

0 otherwise,

(550)

and with flux function f(u) = u3/3.

a) Derive the Rankine-Hugenoit condition for the propagation of discontinuous solutions of this PDE.

b) Find the long time solution of the PDE. You may assume u ≥ 0, so f(u) is convex, and also that at

long times, the solution can be broken into three parts:

u(x, t) =


tαg(x/tβ) if 0 < x < h(t),

0 otherwise,

(551)

for some exponents α and β and positive functions g and h, all of which you should determine.

Solution:

a) First suppose u is a smooth solution to the PDE and v : R × (0,∞) → R is a test function, i.e.,

smooth with compact support. Then integrating the PDE yields

0 =

∫ ∞
−∞

∫ ∞
0

[ut + f(u)x]v dxdt

=

∫ ∞
−∞

∫ ∞
0
−uvt − f(u)vx dxdt−

∫ ∞
−∞

[uv]t=0 dx,

(552)

where we have used integration by parts with the compact support of v to see all the nonlisted

boundary terms vanish. The right hand side of (552) makes sense even when u is not smooth. Con-

sequently, we say u is an integral solution to the PDE when u ∈ L∞(R× (0,∞)) satisfies

0 =

∫ ∞
−∞

∫ ∞
0
−uvt − f(u)vx dxdt−

∫ ∞
−∞

[uv]t=0 dx, (553)

for all test functions v.
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Now suppose u is an integral solution of the PDE, and let C be a curve of discontinuity in u. We

seek to derive a condition for the propagation of this discontinuity. Let V ⊂ R× (0,∞) be a bounded

open subset that intersects with C and with V` and Vr the portions of V to the left and right of C,

respectively. We assume u is smooth to the left and right of C, but not along C. If v is a test function

with compact support in V`, then we see

0 =

∫ ∞
−∞

∫ ∞
0
−uvt − f(u)vx dxdt−

∫ ∞
−∞

[uv]t=0 dx

=

∫∫
V`

−uvt − f(u)vx dxdt

=

∫∫
V`

(ut + f(u)x) v dxdt.

(554)

By the arbitrariness of the test function v, it follows that

ut + f(u)x = 0 in V`. (555)

Likewise, we deduce

ut + f(u)x = 0 in Vr. (556)

Now consider a test function v with compact support in V that does not necessarily vanish along C.

Then

0 =

∫ ∞
−∞

∫ ∞
0
−uvt − f(u)vx dxdt−

∫ ∞
−∞

[uv]t=0 dx

=

∫∫
V`

−uvt − f(u)vx dxdt+

∫∫
Vr

−uvt − f(u)vx dxdt.

(557)

However, integration by parts reveals

∫∫
V`

−uvt − f(u)vx dxdt =

∫∫
V`

(ut + f(u)x) v dxdt︸ ︷︷ ︸
=0

+

∫
C

[
−f(u`)ν

1 − u`ν2
]
v d`, (558)

where the underbraced term equals zero by (555), ν = (ν1, ν2) is the outward normal along ∂V`,

135 Last Modified: 4/26/2019



ADE Qual Notes Heaton

pointing from V` into Vr, and u` is the limiting value of u approaching C from the left. Likewise,

∫∫
Vr

−uvt − f(u)vx dxdt =

∫∫
Vr

(ut + f(u)x) v dxdt︸ ︷︷ ︸
=0

−
∫
C

[
−f(ur)ν

1 − urν2
]
v d`, (559)

where a minus since is used since the outward normal along ∂Vr is −ν and ur is the limiting value of

u approaching C from the right. Combining our results in (557), (558), and (559), we see

0 =

∫
C

(
(f(ur)− f(u`))ν

1 + (ur − u`)ν2
)
v d`. (560)

Again by the arbitrariness of the test function v, this shows

0 = (f(ur)− f(u`))ν
1 + (ur − u`)ν2 along C. (561)

Assuming C is sufficiently smooth, we can let s(t) be the parameterization of x along C so that

(x, t) = (s(t), t) along C. Then ν = 1√
1+ṡ2

(−1, ṡ), which implies

0 = (f(ur)− f(u`))(−1) + (ur − u`)(ṡ) along C, (562)

and so

ṡ(u` − ur) = f(u`)− f(ur) along C. (563)

The condition (563) is the Rankine-Hugenoit condition for the propagation of discontinuities.

b) We proceed via the method of characteristics. Let F (p, q, z, x, t) = q + pz2. Taking p = ux, q = ut,

and z = u gives F = 0 and rise to the ODE system
ẋ(s) = Fp = z2, x(0) = x0,

ṫ(s) = Fq = 1, t(0) = 0,

ż(s) = Fpp+ Fqq = z2p+ 1q = 0, z(0) = q(x0),

(564)
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where q(x) := u(x, 0). This implies t = s and z is constant along characteristics. Observe

x = x0 + tz2(0) = x0 + tq2(x0) =


x0 + t(x0)2 if x0 ∈ (0, 1),

x0 otherwise.

(565)

Consequently, the characteristics are straight lines. For x0 /∈ (0, 1) we see they are vertical lines, and

the characteristics immediately crash at x0 = 1. Let (s(t), t) give the parameterization of the resulting

discontinuity. Then s(0) = 1 and applying the Rankine-Hugenoit condition reveals

ṡ =
f(u`)− f(ur)

u` − ur
=

1
3(1)3 − 1

3(0)2

1− 0
=

1

3
. (566)

Thus s(t) = 1 +
t

3
. By way of contradiction, suppose there is a time t > 0 at which another shock

curve occurs. At such time, we have

x0(1 + tx0) = x = s(t) = 1 +
t

3
=⇒ t =

1− x0

(x0)2 − 1/3
. (567)

For all (x, t) ∈ R× (0, 1),

u(x, t) =


?? if 0 < x < 1 + 1

3 ,

0 otherwise

(568)

�
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S18.7. let Ω ⊂ Rd be a bounded open set with smooth boundary ∂Ω. Recall the notation g ∈ C1(Ω)

means there exists an open set O containing Ω such that g ∈ C1(O). Let f1, . . . , fd ∈ C1(Ω) be such that

d∑
i=1

∂fi
∂xi

= 0 in Ω. (569)

Suppose u ∈ C2(Ω) and 
∆u+

∑d
i=1 fiuxi − u3 − u5 = 0 in Ω,

u = 0 on ∂Ω.

(570)

Show that u is identically zero in Ω.

Solution:

Set q := (f1, f2, . . . , fd) so that q : Ω→ R
d. Then ∇ · q = 0 in Ω and


∆u+ q ·Du− u3 − u5 = 0 in Ω,

u = 0 on ∂Ω.

(571)

Using integration by parts and the fact ∇ · q = 0 in Ω, we see

∫
Ω

(∇ · (qu))u dx =

∫
Ω

(q ·Du)u dx =

∫
Ω

(uq) ·Du dx = −
∫

Ω
(∇ · (uq))u dx+

∫
∂Ω
u2q · ν dσ. (572)

Since u = 0 on ∂Ω, the integral on the boundary vanishes, which implies

∫
Ω

(∇ · (qu))u dx = −
∫

Ω
(∇ · (uq))u dx =⇒

∫
Ω

(qu) ·Du dx = 0, (573)

and so

0 ≤
∫

Ω
|Du|2 dx = −

∫
Ω
u∆u dx+

∫
∂Ω
u
∂u

∂ν
dσ= −

∫
Ω
u
(
u5 + u3 − q ·Du

)
dx, (574)

where the final equality holds by using the PDE and the fact u = 0 on ∂Ω. This implies

0 ≤ −
∫

Ω
u
(
u5 + u3 − q ·Du

)
dx =

∫
Ω
−u6 − u4 + (qu) ·Du dx ≤

∫
Ω

(qu) ·Du dx = 0. (575)

Therefore Du = 0 in Ω, which implies u is constant in each connected subset of Ω. Because u = 0 on ∂Ω,

it then follows that u = 0 in Ω. This completes the proof. �
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S18.8. Let Φ ∈ C3(Rd) be such that Φ and its first derivatives are bounded. We consider the Lagrangian

L : Rd ×Rd → R defined by

L(x, v) :=
1

2
|v|2 − Φ(x). (576)

Given T ∈ (0,∞) and x, y ∈ Rd, we define the minimal action

C(x, y) := inf
σ:[0,T ]→Rd

{∫ T

0
L(σ(τ), σ̇(τ)) dτ : σ ∈ C1([0, T ]), σ(0) = x, σ(T ) = y

}
. (577)

a) Show that if Φ ≡ 0, then σ0(τ) = (1− τ/T )x+ (τ/T )y is the unique path whose action is C(x, y).

b) Show that if Φ is concave, then C(x, y) has at most one minimizer.

Solution:

a) Fix x, y ∈ Rd and define the admissibility class

A :=
{
σ : [0, T ]→ R : σ ∈ C1, σ(0) = x, σ(T ) = y

}
. (578)

We claim A is convex. Indeed, if u, v ∈ A and if λ ∈ (0, 1), then λu+ (1−λ)v ∈ A since this function

is in C1 and

(λu+ (1− λ)v)(0) = λx+ (1− λ)x = x and λu+ (1− λ)v(T ) = λy + (1− λ)y = y. (579)

Define the mapping J : A → R by

J(u) :=

∫ T

0
L(u(τ), u̇(τ)) dτ. (580)

We must show σ0 is the unique minimizer of J over A. By our work in b) below, we know since

Φ ≡ 0 is convex, J is strictly convex. This implies the only extremizer of J is its minimizer. So, it

suffices to show σ0 is the unique extremizer of J over A. Suppose u is an extremizer of J over A and
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v : [0, T ]→ R is C1 with v(0) = v(T ) = 0. Then u+ εv ∈ A for all ε ∈ R. For ε 6= 0 observe

J(u+ εv)− J(u)

ε
=

1

ε

∫ T

0
L(u+ εv, u̇+ εv̇)− L(u, u̇) dτ

=
1

ε

∫ T

0

1

2
|u̇+ εv̇|2 − Φ(u+ εv)− 1

2
|u̇|2 + Φ(u) dτ

=

∫ T

0
u̇ · v̇ + ε|v̇|2 − Φ(u+ εv)− Φ(u)

ε
dτ.

(581)

Since u̇, v̇ ∈ C1([0, T ]) and [0, T ] is compact, we know ‖u̇‖, ‖v̇‖ ∈ L∞([0, T ]). For each t ∈ [0, T ],

let Γt be the line segment connecting u(t) and (u+ εv)(t). Then by the fundamental theorem of line

integrals

∣∣∣∣Φ(u+ εv)− Φ(u)

ε

∣∣∣∣ =

∣∣∣∣1ε
∫

Γt

DΦ · d~̀
∣∣∣∣ ≤ 1

ε

∫
Γt

‖DΦ‖∞ d` =
1

ε
· ε‖v‖∞‖DΦ‖∞ = ‖v‖∞‖DΦ‖∞,

(582)

where we note |Γt| = ε‖v‖∞ and use the fact the first derivatives of Φ are bounded to write DΦ ∈

L∞(Rd). This shows for each t ∈ [0, T ] and |ε| ≤ 1

∣∣∣∣u̇ · v̇ + ε|v̇|2 − Φ(u+ εv)− Φ(u)

ε

∣∣∣∣ ≤ ‖u̇‖∞‖v̇‖∞ + ‖v̇‖2∞ + ‖v‖∞‖DΦ‖∞ <∞, (583)

which is integrable on [0, T ]. This implies we may use the dominated convergence theorem to pull the

limit as ε −→ 0+ inside the integral, i.e., the Gâteaux derivative is

lim
ε→0+

J(u+ εv)− J(u)

ε
= lim

ε→0+

∫ T

0
u̇ · v̇ + ε|v̇|2 − Φ(u+ εv)− Φ(u)

ε
dτ

=

∫ T

0
lim
ε→0+

[
u̇ · v̇ + ε|v̇|2 − Φ(u+ εv)− Φ(u)

ε

]
dτ

=

∫ T

0
u̇ · v̇ −DΦ · v dτ

=

∫ T

0
[−ü−DΦ] · v dτ.

(584)

The final equality holds by integration by parts, recalling v(0) = v(T ) = 0. Because this result
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holds for arbitrary v, it follows that for any extremizer u of J over A

ü = −DΦ in [0, T ]. (585)

Assuming Φ ≡ 0, we see u(t) = c1t+ c2 for scalars c1, c2 ∈ Rd. Applying the boundary conditions to

solve for c1 and c2, we immediately deduce u ≡ σ0 is the unique minimizer of J over A.

b) We claim J : A → R is strictly convex. By way of contradiction, suppose there exists distinct

minimizers u and v of J over A. Then note 1
2(u + v) ∈ A since A is convex and, by the strict

convexity of J ,

J

(
u+ v

2

)
<

1

2
J(u) +

1

2
J(v) = J(u), (586)

which contradicts the fact u is a minimizer of J over A. This contradiction proves that if a minimizer

of J over A exists, then it is unique.

All that remains is to verify J is strictly convex. First note for (x, v) ∈ Rd ×Rd and i ∈ {1, 2, . . . , n}

Lvi(x, v) = vi =⇒ Lvivi(x, v) = 1 =⇒ ∆vL = n > 0, (587)

and so L is strictly convex in v. Since Φ is concave in x, −Φ is convex in x. Because L is the sum of

a convex function and a strictly convex function, we deduce L is strictly convex. Consequently,

J(λu+ (1− λ)v) =

∫ T

0
L(λu+ (1− λ)v, λu̇+ (1− λ)v̇) dτ

=

∫ T

0
|λu̇+ (1− λ)v̇|2 − Φ(λu+ (1− λ)v) dτ

<

∫ T

0
λ|u̇|2 + (1− λ)|v̇|2 − λΦ(u)− (1− λ)Φ(v) dτ

= λJ(u) + (1− λ)J(v).

(588)

The third line follows by the strict convexity of the integrands, making the integral in the third

line larger than that in the second. Therefore J is strictly convex, and we are done.

�
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2017 Fall

F17.1. Consider the differential equation

ẍ+ xnẋ+ x = 0, (589)

where n is a nonnegative integer.

a) If n is even, show that the equilibrium (x, ẋ) = (0, 0) is asymptotically stable.

b) If n = 1, what can you say about the stability of (x, ẋ) = (0, 0)?

Solution:

a) First set y = ẋ to obtain the autonomous ODE system

ẋ = y, ẏ = −xny − x. (590)

We then see (0, 0) is an equilibrium point of the ODE system. Multiplying by y yields

yẏ = −xy
(
xn−1y + 1

)
= −xny2 − xẋ =⇒ d

dt

[
x2

2
+
y2

2

]
= xẋ+ yẏ = −xny2 ≤ 0, (591)

where the final inequality holds since n is even. Thus, the Lyapunov function V (x, y) := (x2 + y2)/2

satisfies

V̇ (x, y) = −xny2 ≤ 0. (592)

Moreover,

DV =

 x

y

 =⇒ D2V =

 1 0

0 1

 , (593)

which is positive definite. Because DV (0, 0) = 0 and D2V (0, 0) is positive definite, V (x, y) > V (0, 0)

in a neighborhood of (0, 0). And, (592) reveals the only fixed point (x, y) of the ODE system for

which V̇ (x, y) = 0 is (x, y) = (0, 0). By Lasalle’s theorem, we conclude (0, 0) is asymptotically stable.

b) Observe
ẏ

ẋ
= −x(y + 1)

y
=⇒ −x dx =

ydy

1 + y
=
u− 1

u
du =

(
1− 1

u

)
du, (594)
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where we set u := y + 1 and note du = dy. This implies

0 =
x2

2
+ u− ln(u) + C − 1,=

x2

2
+ y − ln(y + 1) + C (595)

for some constant C ∈ R. From this, define the Lyapunov function

F (x, y) :=
x2

2
+ y − ln(y + 1), (596)

and set f(y) := ln(1 + y). By Taylor’s theorem, for each y ∈ (−1, 1) there exists ξy between 0 and y

such that

f(y) = f(0) + f ′(0)(y − 0) +
f ′′(ξy)

2
(y − 0)2 = 0 + 1(y − 0)− y2

(1 + ξy)2
, (597)

which implies

y − ln(y + 1) = y − f(y) =
1

2

(
y

1 + ξy

)2

. (598)

Therefore, for all (x, y) ∈ R× (−1, 1) such that (x, y) 6= (0, 0) we see

F (x, y) =
x2

2
+

1

2

(
y

1 + ξy

)2

> 0, (599)

and F (0, 0) = 0. Moreover,

Ḟ (x, y) = xẋ+

(
1− 1

y + 1

)
ẏ = xy +

(
y

y + 1

)
· −x(y + 1) = 0. (600)

Hence Lyapunov’s theorem asserts (0, 0) is stable (n.b. (0, 0) is not asymptotically stable).

�
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F17.2. A chemical diffuses freely in 1D, satisfying the following PDE:

ct = cxx + δΘ, (601)

where Θ(t) is the Heaviside function and δ = δ(x). Construct a similarity solution of the partial differential

equation for c(x, t). You may assume c(x, 0) = 0 for x 6= 0 and lim|x|→∞ c(x, t) = 0.

Solution:

We seek a solution24 of the form c(x, t) = tαv(xt−β), where α and β are to be determined. Throughout

this work, we take η = xt−β and often omit writing the argument of v. Observe

ct = αtα−1v(η)− βtα−β−1xv′(η) = tα−1
[
αv − βηv′

]
and cxx = ∂x

[
tα−βv′(η)

]
= tα−2βv′′. (602)

Thus,

tα−1 [αv − βηv] = tα−2βv′′, for all x 6= 0, (603)

which implies, equating powers of t, that α− 1 = α− 2β, and so β = −1/2. The prompt states this PDE

represents chemical diffusion. So, we may define φ : [0,∞)→ R by

φ(t) :=

∫
R

c(x, t) dx, (604)

where, on physical grounds, we know φ(0) is well-defined and gives the initial amount of the chemical (note

c(x, 0) forms some multiple of the Dirac δ). And, φ(t) is well-defined for all times since a finite amount of

concentration is added per unit amount of time, as is illustrated by the fact

φ̇ =

∫
R

ct dx =

∫
R

cxx + δΘ dx =

∫
R

δΘ dx+ [cx]∞x=−∞︸ ︷︷ ︸
=0

=


1 if t > 0,

0 otherwise.

(605)

However,

φ(t) =

∫
R

tαv(η) dx = tα+1/2

∫
R

v(η) dη = tα+1/2φ(1) =⇒ 1 = φ̇ =

(
α+

1

2

)
tα−1/2φ(1), (606)

which implies α = 1/2 and then also that φ(1) = 1. Assuming φ is continuous, the facts φ(1) = 1 and

24Credit is due here to insights from Dohyun Kim’s notes.
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φ̇ = 1 for t > 0 imply φ(0) = 0. Compiling our results, the PDE may be expressed via

δ(x)Θ(t) = ct − cxx = t−1/2

[
v(η)

2
− ηv′(η)

2

]
− t−1/2v′′(η). (607)

Multiplying by t1/2 yields the ODE

v − ηv′

2
− v′′ = t1/2δ, for all (x, t) ∈ R× (0,∞). (608)

We shall construct a solution to the above ODE by utilizing a Green’s function and the given conditions

on c. Namely, v(±∞) = 0. We see v1 = η is a solution to the associated homogeneous ODE. Using re-

duction of order, a second linearly independent solution is given by v2 = ηw, where w is to be determined.

Differentiating reveals

v′2 = ηw′ + w =⇒ v′′2 = ηw′′ + 2w′, (609)

and so

0 =
1

2

[
ηw − η2w′ − ηw

]
− ηw′′ − 2w′ = −

(
η2

2
+ 2

)
w′ − ηw′′ =⇒ 0 = w′′ +

(
η2 + 4

2η

)
w′. (610)

Upon inclusion of an integrating factor, we see

0 =

(
w′ exp

(∫ η z2 + 4

2z
dz

))′
=

(
w′η2 exp

(
η2

4

))′
. (611)

Whence there exists d ∈ R such that

w′η2 exp

(
η2

4

)
= d =⇒ w = d

∫ η

z−2 exp

(
−z

2

4

)
dz. (612)

Therefore, the general solution to the homogeneous ODE is of the form

y = d1η + d2η

∫ η

z−2 exp

(
−z

2

4

)
dz. (613)
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Then the function v is of the form

v(η) =


d1η + d2ηw if η < 0,

d3η + d4ηw if η > 0,

(614)

where we note w −→ ∓
√
π/2 as x −→ ±∞ and the boundary conditions v(±∞) = 0 imply

√
π/2 · d1 + d3 = 0 and −

√
π/2 · d2 + d4 = 0. (615)

The continuity of v implies

lim
η−→0+

v(η) = lim
η−→0−

v(η). (616)

And, the final condition is given for determining the coefficients is given via

t1/2 = t1/2 lim
ε→0+

∫ ε

−ε
δ(x) dx

= lim
ε→0+

∫ ε

−ε

v − ηv′

2
− v′′ dx

= t1/2 lim
ε→0+

∫ εt−1/2

−εt−1/2

v − ηv′

2
− v′′ dη

= t1/2
[
−v′(0+) + v′(0−)

]
,

(617)

i.e., v′(0−) = 1 + v′(0+). For the v satisfying these conditions, we conclude

c(x, t) = t1/2v
(
xt−1/2

)
. (618)

�
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F17.3. consider the initial value problem

y′′ +
yy′

x4
+ y2 = 0, y(0) = y′(0) = 0. (619)

Determine whether or not there exists a unique solution of this differential equation in a neighborhood of

the origin.

Solution:

We claim this ODE does not admit a unique solution in neighborhood of the origin. First observe the zero

function is a solution to the ODE. Through asymptotic analysis, we show below consistency of an ansatz

solution asymptotic to −2x3 as x −→ 0. This (non-rigorously) establishes existence of two solutions within

a neighborhood of the origin, i.e., the ODE does not admit a unique solution in a neighborhood of the origin.

Assume the ansatz y ∼ Axα as x −→ 0, for scalars A 6= 0 and α to be determined. Plugging this into the

PDE yields

−A2x2α ∼ −y2∼ y′′ + yy′

x4
∼ α(α− 1)Axα−2 + αA2xα+(α−1)−4 as x −→ 0. (620)

Since y(0) = 0, we know α ≥ 0. Consequently,

−A2x2α � α(α− 1)Axα−2 and −A2x2α � αA2x2α−5 as x −→ 0. (621)

Thus

α(α− 1)Axα−2 ∼ −αA2x2α−5 as x −→ 0. (622)

Equating powers of x, we see α− 2 = 2α− 5 implies α = 3. Equating the coefficients, we obtain

3(2− 1)A = −3A2 =⇒ A = −2, (623)

since we assumed A 6= 0. Thus y ∼ −2x3 as x −→ 0. �
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F17.4. Solve for the entropy satisfying weak solution of Burgers’ equation

ut + uux = 0, x ∈ R, t > 0, (624)

with initial data

u(x, 0) =


1− x if 0 ≤ x ≤ 1,

0 otherwise.

(625)

Solution:

Let g(x) := u(x, 0) and f(u) = 1
2u

2. Then the PDE becomes


ut + f(u)x = 0 in R× (0,∞),

u = g on R× {t = 0},
(626)

which is the form of a conservation law. We proceed via the method of characteristics. Define

F (p, q, z, x, t) := q + zp. Taking p = ux, q = ut, and z = u, we see F = 0 and obtain the ODE system


ẋ(s) = Fp = z(s), x(0) = x0,

ṫ(s) = Fq = 1, t(0) = 0,

ż(s) = Fpp+ Fqq = 0, z(0) = g(x0).

(627)

This implies s = t and z is constant along characteristics. Hence

x(t) = tg(x0) + x0 =


(1− t)x0 + t if 0 ≤ x0 ≤ 1,

x0 otherwise.

(628)

The characteristics originating in [0, 1] × {t = 0} form line segments, ending at (1, 1). For such characte-

ristics, it follows that t ≤ x ≤ 1 when t ∈ [0, 1] and

x = (1− t)x0 + t =⇒ z(t) = g(x0) = 1− x0 = 1− x− t
1− t

=
1− x
1− t

. (629)

Alternatively, for 0 < x < t, we have 0 < x/t < 1 and note that, if function u of the form u(x, t) = v(x/t)
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solves the PDE, then25

0 = ut + f(u)x = −v′
(x
t

) x
t2

+ f ′(v)v′
(x
t

) 1

t
= v′

(x
t

) 1

t

[
f ′
(
v
(x
t

))
− x

t

]
=⇒ v = (f ′)−1, (630)

assuming v′ never vanishes. Whence

u(x, t) = (f ′)−1
(x
t

)
=
x

t
, whenever 0 < x < t, (631)

where we note f ′(u) = u is the identity function. Consequently, for all (x, t) ∈ R× (0, 1)

u(x, t) =


x
t if 0 ≤ x ≤ t,

1−x
1−t if t ≤ x ≤ 1,

0 otherwise.

(632)

At (x, t) = (1, 1) the characteristics cross, and so a shock occurs. Using the Rankine-Hugenoit condition,

we see the curve (s(t), t) describing the shock satisfies s(1) = 1 and

ṡ(t) =
1
2f(u`)− 1

2f(ur)

u` − ur
=

1
2 · (x/t)

2 − 0

(x/t)− 0
=

x

2t
, (633)

where u` and ur denote the function values to the left and right of the shock, respectively. Moreover, note

the entropy conditions are satisfied since

f ′(u`) =
x

t
>

x

2t
= ṡ > 0 = f ′(ur). (634)

Using separation of variables and writing x = s(t), we deduce

dx

x
=

1

2
· dt

t
=⇒ ln(x) =

1

2
ln(t) + C0 = ln(t1/2) + C0 =⇒ x = C1t

1/2, (635)

for some constants C0 and C1 = exp(C0). The fact s(1) = 1 then implies s(t) = t1/2. Thus for (x, t) ∈
25The nifty idea for presenting this came from reading page 155 of Evan’s text. This approach for the rarefaction wave is

quite general, which will be useful for harder conservation law problems.
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R× (1,∞) we obtain

u(x, t) =


x
t if 0 ≤ x < t1/2,

0 otherwise.

(636)

Then (632) and (636) give the entropy satisfying weak solution u of the given PDE. �

150 Last Modified: 4/26/2019



ADE Qual Notes Heaton

F17.5

a) Solve for the Green’s function G(·, x̂) : [0, 1]→ [0, 1] with

− ∂2G

∂x2
(x; x̂) = δ(x− x̂), for x̂ ∈ (0, 1), (637)

with G(0; x̂) = G(1; x̂) = 0.

b) Define

a(w, v) :=

∫ 1

0
wx(x)vx(x) dx and (v, f) :=

∫ 1

0
v(x)f(x) dx, (638)

for some f ∈ L2(0, 1). Let u ∈ H1(0, 1) with u(0) = u(1) and

a(u, v) = (v, f) for all v ∈ H1(0, 1), (639)

with v(0) = v(1) = 0. Similarly define uh ∈W k with uh(0) = uh(1) = 0 and

a(uh, vh) = (vh, f) for all vh ∈W h, (640)

where

W h :=
{
vh ∈ H1(0, 1) : v1, . . . , vN ∈ R such that vh(x) =

∑N
i=1 viNi(x)

}
. (641)

Here h = 1/(N + 1), xi = ih, and

Ni(x) :=



x− xi−1

h
if x ∈ (xi−1, xi),

xi+1 − x
h

if x ∈ [xi, xi+1),

0 otherwise.

(642)

Show26 that G(·, xi) ∈W h and use this to show that uh(xi) = u(xi).

26This is a variation of Exercise 1.19 on page 43 of Johnson’s Numerical Solution of Partial Differential Equations by the
Finite Element Method.
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Solution:

a) The general solution to −y′′ = 0 is a linear function. Thus G(x; x̂) may be expressed via

G(x; x̂) =


c1x+ c2 if x < x̂,

d1x+ d2 if x > x̂.

(643)

The boundary condition G(0; x̂) = 0 implies c2 = 0. Similarly, the boundary condition G(1; x̂) = 0

implies d2 = −d1, and so

G(x; x̂) =


c1x if x < x̂,

d1(x− 1) if x > x̂.

(644)

By the continuity of G, we deduce

c1x̂ = lim
x→x̂−

G(x; x̂) = lim
x→x̂+

G(x; x̂) = d1(x̂− 1) =⇒ c1 =
d1(x̂− 1)

x̂
. (645)

Integrating our differential equation, the jump discontinuity reveals

1 = Gx(x̂+; x̂)−Gx(x̂−; x̂) = d1 − c1 = d1

(
1− x̂− 1

x̂

)
=
d1

x̂
=⇒ d1 = x̂, (646)

and so c1 = x̂− 1. Therefore,

G(x; x̂) =


(x̂− 1)x if x < x̂,

(x− 1)x̂ if x > x̂.

(647)

b) We first show G(·, xi) ∈W h. It suffices to show there exists scalars {v1, . . . , vN} such that

G(x, xi) =
N∑
j=1

vjNj(x), (648)

for all x ∈ [0, 1]. We shall verify (648), taking vj := G(xj , xi) for all j ∈ {1, 2, . . . , N}. Since each
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Ni(x) is the standard tent function, it follows directly that

N∑
j=1

vjNj(x`) =
N∑
j=1

G(xj , xi)Nj(x`) =
N∑
j=1

G(xj , xi)δj` = G(x`, xi), for all ` ∈ {1, 2, . . . , N}. (649)

Thus, (648) holds at each x`. Now, if x ∈ [0, x1], then the equality in (648) holds since both the left

and right hand sides are linear functions on [0, x1] that interpolate through (0, 0) and (x1, G(x1, xi)),

and linear interpolations through two distinct points are unique. Similarly, (648) holds for x ∈ [xN , 1].

Now suppose x ∈ [x1, xN ]−{x1, . . . , xN}. Then there is an index ` such that x > x` and x ∈ spt(N`)

and x ∈ spt(N`+1) and x /∈ spt(Nj) for all other j /∈ {`, `+ 1}. If ` ≥ i, then this implies

N∑
j=1

vjNj(x) = v`N`(x) + v`+1N`+1(x)

= G(x`, xi) ·
x`+1 − x

h
+G(x`+1, xi) ·

x− x`
h

=
1

h
[(x` − 1)xi · (x`+1 − x) + (x`+1 − 1)xi · (x− x`)]

=
1

h
[(x` − 1)xi · (x` + h− x) + (x` + h− 1)xi · (x− x`)]

= (x− 1)xi

= G(x;xi),

(650)

where we have used the fact x`+1 = x` + h. This shows (648) holds in this case. Likewise, for

` < i, we see (648) again holds. This covers all cases, and so (648) holds for all x ∈ [0, 1].

For notational compactness, set Gi(x) := G(x;xi). Then for each function φ ∈ H1
0 (0, 1) we see

a(φ,Gi) =

∫ 1

0
φ′(x)G′(x;xi) dx

= −
∫ 1

0
φ(x)G′′(x;xi) dx+

[
φ(x)G′(x;xi)

]1
x=0

=

∫ 1

0
φ(x)δ(x− xi) dx

= φ(xi),

(651)
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where we use integration by parts, the fact G satisfies (637), and the fact φ = 0 on ∂(0, 1). Since

Gi ∈W h ⊂ H1(0, 1), this further implies

u(xi)− uh(xi) = a(u,Gi)− a(uh, Gi)= (Gi, f)− (Gi, f) = 0, for i = 1, 2, . . . , N , (652)

which completes the proof.

�
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F17.6. Consider the wave equation
utt − c2∆u = 0 in R3 × (0,∞),

u = f on R3 × {t = 0},

ut = g on R3 × {t = 0},

(653)

where the initial data f and g are only nonzero in the region a < ‖x‖ < b, with ‖ · ‖ the `1 norm of

x. Given a point x ∈ R3, find the time T > 0 such that u(x, t) = 0 for t ∈ (0, T ) a) when ‖x‖ > b and b)

when ‖x‖ < a.

Solution:

a) We illustrate the the support of the initial data as follows.

x1

x2

ba

x

Figure 20: Illustration of the support of the initial data for F17.6b (the slice viewed at x3 = 0).

Since the dimension of R3 is odd and at least three, Huygen’s principle asserts, at a given point

x ∈ R3, the data f and g only affect the solution v on the boundary ∂C(x) of the cone27

C(x) := {(y, t) ∈ R3 × (0,∞) : |x− y| < ct}, (654)

27See the PDE text by Evans on page 80.
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i.e., a “disturbance” propagates along a sharp wavefront. Consider the problem28

min
y∈R3

1

2
‖y − x‖22 s.t. ‖y‖1 = b. (655)

The solution y? to the problem (655) is such that ‖x − y?‖ gives the minimum distance from x to a

point in the maximal support of the initial data. One may also view y? as the projection of x onto

the `1 ball centered at the origin of radius b. Because we know the wave propagates at speed c, it

follows that the minimum time T at which a disturbance may arrive is

T =
‖x− y?‖

c
. (656)

b) In similar fashion to a), consider the problem

min
y∈R3

1

2
‖y − x‖22 s.t. ‖y‖1 = a. (657)

Then the solution ỹ to (657) reveals the time T for a disturbance to arrive is

T =
‖x− ỹ‖

c
. (658)

�

28Upon discussing this problem with Teran, it was noted that the exam graders did not expect students to fully solve the
minimization problem (655). It apparently sufficed to illustrate the problem and prescribe an appropriate interpretation.
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Remark: If someone has buckets of time to kill after having easily aced all the other problems on the

exam (sarcasm intended), the following outlines the approach for solving the optimization problem (655).

This primal problem has the associated Lagrangian L(y, ν) given by

L(y, ν) =
1

2
‖y − x‖2 + ν (‖y‖1 − b) . (659)

At a saddle point (y?, ν?),

0 ∈ ∂yL = y? − x+ ν · ∂y‖y?‖1 and 0 ∈ ∂νL = ‖y?‖1 − b. (660)

This implies ‖y?‖1 = b, as expected. Also, the subgradient of the absolute value | · | is

∂|yi| =


1 if yi > 0,

[−1, 1] if yi = 0,

−1 if yi < 0.

(661)

Then ∂‖y‖1 is the component-wise application of the subgradient of the absolute value. Having x, we could

carry this further forward in an explicit fashion (the limitation being that the subgradient is set-valued

and not a single number, making the final result be expressed in several cases). 4
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F17.7. For a bounded domain Ω in Rn with smooth boundary, consider a smooth solution of the parabolic

PDE 
ut −∆u = (M − u)+ in Ω× (0,∞),

∂u

∂ν
= 0 on ∂Ω× (0,∞),

u = g on Ω× {t = 0},

(662)

where f+ := max{f, 0} and g is a smooth function which vanishes on ∂Ω. Show that if g(x) ≤ M ,

then u(x, t) ≤M for all t > 0.

Solution:

Fix a time T > 0. Then let ε > 0 and set v := u−M − εet. Then
vt −∆v = (−v − εet)+ − εet in Ω× (0, T ],

∂v

∂n
= 0 on ∂Ω× (0, T ],

v ≤ −ε on Ω× {t = 0}.

(663)

Set ΩT := Ω × (0, T ] and ΓT to be the parabolic boundary. Since ΩT is compact and v is smooth, v

attains its supremum over ΩT . By way of contradiction, suppose

sup
ΩT

v ≥ 0. (664)

By (663), it follows that the supremum occurs at a positive time since v ≤ −ε < 0 at time t = 0. If the

max were to occur at a point on ∂Ω × (0, T ], then by the ellipticity of the Laplacian operator29 it would

follow from Hopf’s lemma that ∂v/∂ν > 0 at the maximizer, which would contradict (663). Therefore, the

maximum is obtained at a point (x, t) ∈ ΩT = ΩT − ΓT , where we let t be the first time at which this

maximum is obtained (which exists by the continuity of v). This implies vt(x, t) ≥ 0. Since x is a local

maximizer of v(·, t), it follows that 0 ≥ ∆v(x, t). Therefore, at (x, t),

0 ≤ vt −∆v = (−v − εet)+ − εet = 0− εet ≤ −ε < 0, (665)

a contradiction. This contradiction proves the assumption in (664) was false. Therefore,

v = u−M − εet < 0 =⇒ u < M + εet ≤M + εeT in ΩT . (666)

29I use this phrase since I honestly don’t know how we are supposed to apply Hopf’s lemma.

158 Last Modified: 4/26/2019



ADE Qual Notes Heaton

Because this holds for arbitrary ε > 0, we may let ε −→ 0+ to deduce

u ≤M in ΩT . (667)

And, since this result holds for arbitrary T > 0, we may let T −→ ∞ to deduce u(x, t) ≤ M for all t > 0,

as desired.

�
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F17.8. Let Ω ⊂ Rn be a smooth bounded domain. Suppose there exists a minimizer u of the functional

E(u) =
1

2

∫
Ω
|Du|2 dx (668)

among smooth functions w in Ω with the constraints

w = 0 on ∂Ω,

∫
Ω
w2 dx = 1. (669)

a) Show for any smooth function w in Ω there exists a smooth function φ : R→ R with φ(0) = 0 such

that w(τ) := τw + φ(τ)u satisfies ∫
Ω

(u+ w(τ))2 dx = 1, (670)

for sufficiently small τ > 0. (Note the range of τ depends on the choice of w.)

b) Show that φ′(0) = −
∫

Ω uw dx.

c) One can use a) and b) to perturb the energy to derive a boundary value problem that u satisfies.

Find the PDE problem, which involves the constant

λ :=

∫
Ω
|Du|2 dx. (671)

Solution:

a) Observe (670) holds precisely when

1 =

∫
Ω
u2 + 2uw(τ) + w(τ)2 dx

= 1 + 2

∫
Ω
u[τw + φ(τ)u] + [τw + φ(τ)u]2 dx

= 1 +

∫
Ω

2τuw + 2φ(τ)u2 dx+

∫
Ω
τ2w2 + 2τφ(τ)uw + φ(τ)2u2 dx

= φ(τ)2 + φ(τ)

[
2 + 2τ

∫
Ω
uw dx

]
+

[
1 + 2τ

∫
Ω
uw dx+ τ2

∫
Ω
w2 dx

]
.

(672)
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Using the quadratic formula, we see (672) holds precisely when

φ(τ) =
−
[
2 + 2τ

∫
Ω uw dx

]
±
√[

2 + 2τ
∫

Ω uw dx
]2 − 4

[
2τ
∫

Ω uw dx+ τ2
∫

Ωw
2 dx

]
2

.
(673)

The choice of φ with the addition (rather than subtraction) is the only choice that yields the de-

sired φ(τ). Additionally, note

[
2 + 2τ

∫
Ω
uw dx

]2

− 4

[
2τ

∫
Ω
uw dx+ τ2

∫
Ω
w2 dx

]
= 4 + 8τ

∫
Ω
uw dx+ 4τ2

[∫
Ω
uw dx

]2

− 8τ

∫
Ω
uw dx− 4τ2

∫
Ω
w2 dx

= 4

[
1 + τ2

(∫
Ω
uw dx

)2

− τ2

∫
Ω
w2 dx

]
.

(674)

Thus, by our earlier work, we see (670) holds for

φ(τ) =
−
[
2 + 2τ

∫
Ω uw dx

]
+ 2
√

1 + τ2
(∫

Ω uw dx
)2 − τ2

∫
Ωw

2 dx

2

= −1− τ
∫

Ω
uw dx+

(
1 + τ2

[(∫
Ω
uw dx

)2

−
∫

Ω
w2 dx

]
︸ ︷︷ ︸

=:µ

)1/2

= −1− τ
∫

Ω
uw dx+

√
1 + τ2µ.

(675)

provided τ > 0 is sufficiently small to ensure the argument inside the square root is nonnegative.

b) Through direct computation we see

φ′(0) =

[
−
∫

Ω
uw dx+

1

2

(
1 + τ2µ

)−1/2 · 2τµ
]
τ=0

= −
∫

Ω
uw dx. (676)
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c) We proceed by using Lagrange’s theorem for multipliers. Observe, for each test function v,

δE(u, v) = lim
ε→0+

E(u+ εv)− E(u)

ε

= lim
ε→0+

1

2ε

[∫
Ω
|Du+ εDv|2 − |Du|2 dx

]
= lim

ε→0+

∫
Ω
Du ·Dv +

ε

2
|Dv|2 dx

=

∫
Ω
Du ·Dv dx.

(677)

Similarly, letting

J(u) :=

∫
Ω
u2 dx, (678)

we see

δJ(u, v) = lim
ε→0+

J(u+ εv)− J(u)

ε
=

∫
Ω
uv dx. (679)

Define the admissibility class A := {u ∈ C2(Ω) : u = 0 on ∂Ω, J(u) = 1}. Lagrange’s theorem for

multipliers asserts there exists λ ∈ R such that the minimizer u of E over A satisfies

δE(u, v) = λδJ(u, v), for all test functions v. (680)

Thus, for each test function v,

0 =

∫
Ω
Du ·Dv − λuv dx =

∫
Ω

(−∆u− λu)v dx+

∫
∂Ω
u
∂v

∂n
dσ︸ ︷︷ ︸

=0

=

∫
Ω

(−∆u− λu)v dx, (681)

from which it follows that 
−∆u = λu in Ω,

u = 0 on ∂Ω.

(682)

Furthermore, ∫
Ω
|Du|2 dx = −

∫
Ω
u∆u dx+

∫
∂Ω
u
∂u

∂n
dσ︸ ︷︷ ︸

=0

=

∫
Ω
λu2 dx = λ, (683)

as desired.

�
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2017 Spring

S17.1. Let us consider the continuity equation ρt +∇ · (ρv) = 0 in R3× (0,∞)→ R with v(x) : R3 → R
3

and initial data ρ0(x).

a) Represent ρ in terms of ρ0 using the method of characteristics, assuming that v is Lipschitz continuous.

Explain where the Lipschitz continuity assumption is used in the argument.

b) Suppose −1 < ∇ · v in R3 and ρ0 = χ|x|<1, where χA denotes the characteristic function of a set A.

Show that then Ω := {x : ρ(x, 1) > 0} has its volume greater than 4/3.

Solution:

a) Define F (p, q, z, x, t) := q+ p · v+ z(∇ · v). Then, using the method of characteristics, taking p = Dρ,

z = ρ, and q = ρt, we obtain F = 0 and the ODE system
ẋ(s) = Fp = v, x(0) = x0,

ṫ(s) = Fq = 1, t(0) = 0,

ż(s) = Fp · p+ Fqq = v · p+ q = −z(∇ · v), z(0) = ρ0(x0).

(684)

This implies t = s and

x(t) = x0 +

∫ t

0
v(x(τ)) dτ. (685)

Since v is Lipschitz, elementary theory of differential equations tells us there exists a unique solution

to (685). Then

ρ(x, t) = z(t) = ρ0(x0) exp

(
−
∫ t

0
∇ · v(x(τ)) dτ

)
, (686)

which is well-defined by the existence of the unique path x(t) that passes through x and originates at

x0 (n.b. this is where the Lipschitz continuity was used).

b) Let u be a solution to the PDE ut+∇u ·v = 0 with initial data ρ0. Then the method of characteristics

reveals that if F (p, q, z, x, t) = q + p · v, then taking z = u, p = Du, and q = ut implies F = 0 and
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gives the ODE system
ẋ(s) = Fp = v, x(0) = x0,

ṫ(s) = Fq = 1, t(0) = 0,

ż(s) = Fp · p+ Fqq = v · p+ q = 0, z(0) = ρ0(x0).

(687)

Notice u has the same characteristics as ρ. Moreover, ρ is positive along each characteristic that starts

in the support of ρ0 since ρ0 is nonnegative. Consequently, for each t ∈ (0,∞) the equality

{x : u(x, t) > 0} = {x : ρ(x, t) > 0} (688)

holds. Since u is constant along its characteristics and ρ0 is the characteristic function, it follows that

|{x : u(x, t) > 0}| = w(t) :=

∫
R3

u(x, t) dx. (689)

Then

w(0) =

∫
R3

ρ0(x) dx = |{x : |x| < 1}| = 4π

3
. (690)

Differentiating in time reveals

ẇ(t) =

∫
R3

ut dx =

∫
R3

−∇u · v dx =

∫
R3

u (∇ · v) dx > −
∫
R3

u dx = −w(t), (691)

where we have used integration by parts. We now prove a variation of Gronwall’s inequality. Observe

(691) implies

d

dt

[
wet
]

= [ẇ + w] et > 0, (692)

which shows wet is increasing. Thus,

w(t)et ≥ w(0)e0 = w(0) =⇒ w(t) ≥ w(0)e−t =
4π

3et
. (693)

Combining the above results with this fact, we see

{x : ρ(x, 1) > 0} = {x : u(x, 1) > 0} = w(1) ≥ 4π

3e
>

4

3
, (694)

noting π > 3 > e. This completes the proof.

�
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S17.2. Consider the following parabolic equation

θt = ∆
((
|x|2 + 1

)
θ
)

+ |Dθ| − 4nθ in Rn × (0,∞). (695)

a) Let θ1(x, t) and θ2(x, t) be two smooth, nonnegative solutions of the above equation which vanishes

at infinity, with ordered initial data θ1(x, 0) ≤ θ2(x, 0). Show that θ1(x, t) ≤ θ2(x, t) for all t > 0.

b) Let θ be a smooth, nonnegative, integrable solution of the above equation, where all its derivatives

and its products with |x|2 vanish as |x| → ∞. Show that
∫
θ(·, t) dx exponentially decays to zero as

t −→∞.

Solution:

a) Set w(x, t) := θ2(x, t) − θ1(x, t). It suffices to show w ≥ 0 in Rn × (0,∞), noting we are given that

w ≥ 0 on Rn × {t = 0}. Now let T > 0 and ε > 0. Then choose R > 0 sufficiently large that

θ1, θ2 ≤ ε in (Rn −B(0, R))× [0, T ]. (696)

We presume such a choice is possible by the hypotheses in the prompt. Since θ1 and θ2 are nonnegative,

this implies

w ≥ −ε in (Rn −B(0, R))× [0, T ]. (697)

Letting ΩT := B(0, R)× (0, T ], we claim

inf
ΩT

w > −ε, (698)

which implies

inf
ΩT

w = min

{
inf
ΩT

w, inf
ΓT

w

}
≥ min{−ε,−ε} ≥ −ε, (699)

where ΓT is the parabolic boundary of ΩT and we have used (697) for the boundary portion assertion.

Together (697) and (699) imply

inf
Rn×[0,T ]

w = inf

{
inf
ΩT

w, inf
(Rn−B(0,R))×[0,T ]

w

}
≥ inf{−ε,−ε} = −ε =⇒ inf

Rn×[0,T ]
w ≥ −ε. (700)
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Because the right hand inequality holds for arbitrary ε > 0, we may let ε −→ 0+ to deduce

inf
Rn×[0,T ]

w ≥ 0. (701)

Finally, because T > 0 was also arbitrarily chosen, we may let T −→∞ to deduce

w ≥ 0 in Rn × [0,∞), (702)

as desired.

All that remains is to verify (698). By way of contradiction, suppose there exists a point (x, t) ∈ ΩT

for which w(x, t) = −ε, with t > 0 the first time at which this occurs (since w(x, 0) ≥ 0). This implies

wt(x, t) ≤ 0. And, since x is a local minimizer of w(·, t) we know ∆w(x, t) ≥ 0 and

0 = Dw(x, t) = Dθ2(x, t)−Dθ1(x, t) =⇒ Dθ2(x, t) = Dθ1(x, t). (703)

Consequently, at (x, t),

0 ≥ wt = ∆
(
[|x|2 + 1]w

)
+ |Dθ2| −D|θ1| − 4nw

= ∆
(
[|x|2 + 1]w

)
− 4nw

= w∆(|x|2 + 1) + 2D
[
|x|2 + 1

]
·Dw + (|x|2 + 1)∆w − 4nw

= −2nw + 4x ·Dw + (|x|2 + 1)∆w

≥ −2nw

= 2nε

> 0,

(704)

which implies 0 > 0, a contradiction. This completes the proof.

b) Define e : [0,∞)→ R by

e(t) :=

∫
Rn

θ(x, t) dx. (705)
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Since θ is integrable, this function e is well-defined. Differentiating in time, we see

ė =

∫
Rn

θt dx

=

∫
Rn

∆
(
(|x|2 + 1)θ

)
+ |Dθ| − 4nθ dx

=

∫
Rn

D1 ·D
(
(|x|2 + 1)θ

)︸ ︷︷ ︸
=0

+|Dθ| − 4nθ dx

=

∫
Rn

sgn(Dθ) ·Dθ − 4nθ dx

=

∫
Rn

[∇ · sgn(Dθ)]︸ ︷︷ ︸
=0

θ − 4nθ dx

= −4ne(t),

(706)

where sgn is the signum function and is applied component-wise on vector inputs and the boun-

dary terms vanish during the integration by parts steps since θ by our hypothesis about θ vanishing.

Note the “=0” statement on the fifth line is accurate up to a set of measure zero. This result implies

e(t) = e(0) exp(−4nt), (707)

from which we immediately deduce e(t) −→ 0 exponentially as t −→∞.

�
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Remark: We offer the following as an alternative approach to asserting

∫
Rn

|Dθ| dx = 0. (708)

The third equality holds using integration by parts, where the boundary terms vanish by our hypotheses.

We next show the integral term in the final line of (706) equals zero. Employing the use of polar coordinates

(r, φ) with r ∈ R the radial distance and φ ∈ Rn−1 giving the direction of each point from the origin, we see

θ(r2, φ)− θ(r1, φ) =

∫
Γ
Dθ(r, φ) · ds =

∫ r2

r1

−|Dθ(`, φ)|d`, (709)

where Γ is the straight path from (r1, φ) to (r2, φ). The final equality holds since the fact θ is radially

symmetric30 implies Dθ points radially so that Dθ · ds = −|Dθ|d` along Γ. Since lim|x|→∞ θ = 0, for each

ε > 0 we see

− θ(ε, φ) = lim
r→∞

θ(r, φ)− θ(ε, φ) =

∫ ∞
ε
−|Dθ| d` =⇒ θ(ε, φ) =

∫ ∞
ε
|Dθ| d`. (710)

Substituting in this result, the integral of θ over the boundary of B(0, ε) becomes

∫
∂B(0,ε)

θ(r, φ) dx =

∫
∂B(0,ε)

∫ ∞
ε
|Dθ(r, φ)| dr =

∫
Rn−B(0,ε)

|Dθ| dx (711)

However,

0 ≤ lim
ε→0+

∫
∂B(0,ε)

θ(r, φ) dx = lim
ε→0+

C |∂B(0, ε)| = lim
ε→0+

Cnα(n)εn−1 = 0, (712)

where C := ‖θ‖L∞(∂B(0,1)) and α(n) is the volume of the unit ball in Rn. Thus (711) and (712) together

imply ∫
Rn

|Dθ| dx = lim
ε→0+

∫
∂B(0,ε)

θ(r, φ) dx = 0. (713)

Consequently, (706) and (713) imply

ė(t) = −4ne(t) =⇒ e(t) = e(0) exp (−4nt) , (714)

and we conclude e decays exponentially to zero as t −→∞, as desired. 4

30This should be true, but we do not verify the details here.
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S17.3. Let u solve the following boundary value problem


utt −∆u = 0 in {(x, t) ∈ R3 × (0,∞) : x1 > t/2},

ut = 4ux1 on R3 × {x1 = t/2}.
(715)

Show that u = 0 in {|x| < R − t} ∩ {x1 > t/2} when u(x, 0) = ut(x, 0) = 0 in {|x| < R} ∩ {x1 > 0}.

Explain where the boundary condition {x1 = t/2} has been used.

Solution:

We proceed via an energy argument. Define the local wave energy e : [0, R)→ R by

e(t) :=
1

2

∫
S(t)

u2
t + |Du|2 dx, (716)

where S(t) := B(0, R− t)∩{x ∈ R3 : x1 > t/2}. By our hypothesis, Du = 0 and ut = 0 on S(0)×{t = 0},

and so e(0) = 0. Differentiating in time yields

ė(t) =

∫
S(t)

ututt +Du ·Dut dx+

∫
∂S(t)

1

2

(
u2
t + |Du|2

)
v · n dσ

=

∫
S(t)

ut(utt −∆u) dx︸ ︷︷ ︸
=0

+

∫
∂S(t)

ut
∂u

∂n
+

1

2

(
u2
t + |Du|2

)
v · n dσ

=

∫
∂S(t)

ut
∂u

∂n
+

1

2

(
u2
t + |Du|2

)
v · n dσ,

(717)

where v(t) ∈ R3 is the Eulerian velocity of the boundary S(t) and n is the outward normal along the

boundary S(t). Now observe

∂S(t) =
(
∂B(0, R− t) ∩ {x1 > t/2}

)
︸ ︷︷ ︸

=:A(t)

∪
(
B(0, R− t) ∩ {x1 = t/2}

)
︸ ︷︷ ︸

=:B(t)

= A(t) ∪B(t). (718)
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Along A(t) we have v = −n and along B(t) we have v = −n/2. This implies∫
B(t)

ut
∂u

∂n
+

1

2

(
u2
t + |Du|2

)
v · n dσ =

∫
B(t)

utux1 +
1

2

(
|ut|2 + |Du|2

)
· −1

2
dσ

=

∫
B(t)

4u2
x1
− 1

4

(
16u2

x1
+ |Du|2

)
dσ

= −
∫
B(t)
|Du|2 dσ.

(719)

Also, by the Cauchy-Schwarz inequality

ut
∂u

∂n
≤ |ut|

∣∣∣∣∂u∂n
∣∣∣∣ = |ut||Du · n| ≤ |ut||Du| ≤

1

2

(
u2
t + |Du|2

)
, (720)

where we note |n| = 1 and

0 ≤ (a− b)2 = a2 − 2ab+ b2 =⇒ ab ≤ 1

2

(
a2 + b2

)
, for all a, b ∈ R. (721)

Thus,

∫
A(t)

ut
∂u

∂n
+

1

2

(
u2
t + |Du|2

)
v · n dσ =

∫
A(t)

ut
∂u

∂n
− 1

2

(
u2
t + |Du|2

)
dσ≤

∫
A(t)

0 dσ = 0. (722)

Together (717), (718), (719), and (722) imply

ė(t) =
1

2

∫
∂S(t)

ut
∂u

∂ν
+

1

2

(
u2
t + |Du|2

)
v · n dσ ≤ −

∫
B(t)
|Du|2 dσ ≤ 0, (723)

i.e., e is nonincreasing, and so e(t) ≤ e(0) = 0. Since the integrand in the definition of e(t) is nonnegative,

we then deduce e(t) = 0. Thus, ut = 0 and Du = 0 on S(t) × {t} for each for each t ∈ [0, R). That is,

ut = 0 and Du = 0 in K(R) := {(x, t) : 0 ≤ t < R, x ∈ S(t)}. This implies u is constant in K(R). Since

K(R) is connected and we are given that u = 0 on S(0) ⊂ K(R), it follows that u = 0 in K(R). This

completes the proof. �
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S17.4. Let Vk = span{q1, q2, . . . , qk} with qi 6= 0 ∈ H1(0, 1) and

∫ 1

0
qiqj dx = δij =


1 if i = j,

0 if i 6= j.

(724)

Define A = (aij) ∈ Rk×k by

aij =

∫ 1

0
q′iq
′
j dx (725)

with eigenvalue decomposition31 A = V TΛV , where Λ = diag(λi) and V = (vij) is orthogonal. Show that

ri ∈ (Vk)⊥ =

{
f ∈ L2(0, 1) :

∫ 1

0
fq dx = 0 ∀ q ∈ Vk

}
, (726)

where ri := −w′′i − λiwi and wi :=
∑

j vijqj .

Solution:

Define the inner products 〈·, ·〉 and (·, ·) by

〈f, g〉 :=

∫ 1

0
fg dx and (f, g) :=

∫ 1

0
f ′g′ dx. (727)

Define the matrix M = (mij) by mij := 〈ri, qj〉. Now observe

mij = 〈ri, qj〉 =
∑
`

vi` [(q`, qj)− λi 〈q`, qj〉] =
∑
`

vi` [a`j − λiδ`j ] =
∑
`

vi`a`j − λiδj`vij , (728)

where the second equality holds since

∫ 1

0
(−q′′` − λiq`)qj dx =

∫ 1

0
q′`q
′
j − λiq`)qj dx+���

��:0[
−q′`qj

]1
0

= (q`, qj)− λi 〈q`, qj〉 . (729)

Using the definition of the matrix product and V , Λ, and A, we see

mij =

(∑
`

vi`a`j

)
− λivij= (V A)ij − (ΛV )ij = (V A− ΛV )ij . (730)

31I believe a typo was made here since originally the prompt was given as A = V ΛV T .
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However, since V is orthogonal,

A = V TΛV =⇒ V A = V V TΛV = ΛV =⇒ 0 = V A− ΛV. (731)

Then (730) and (731) imply M = 0. Now let q ∈ Vk. Then there exist scalars α1, . . . , αk such that

q = α1q1 + · · ·+ αkqk. For each ri, the linearity of the scalar product yields

〈ri, q〉 = 〈ri, α1q1 + · · ·+ αkqk〉= α1 〈ri, q1〉+ · · ·αk 〈ri, qk〉 = α10 + · · ·+ αk0= 0, (732)

where the third equality holds since M = 0. This shows ri ∈
(
Vk
)⊥

and completes the proof. �
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S17.5. Consider the PDE 

∂2u

∂t2
(x, t) =

∂2u

∂x2
(x, t), in (0, 1)× (0,∞),

u(x, 0) = (s− 1)x on (0, 1)× {t = 0},

ut(x, 0) = 0 on (0, 1)× {t = 0},
∂u

∂x
= 0 on ∂(0, 1)× (0,∞),

(733)

for a constant s ∈ R.

a) Solve the PDE. Hint: solve in terms of the even extension ue : R→ R of the initial data where

ue(x) =


(s1)x̂, if x̂ ∈ [0, 1),

(s− 1(2− x̂)), if x̂ ∈ [1, 2),

(734)

with x̂ = 2(x/2 − floor(x/2)) for x ∈ R. The function floor(y) is the closest integer to y with

floor(y) ≤ y.

b) Define

e(t) :=

∫ 1

0
u2
t (x, t) + u2

x(x, t) dx. (735)

Show that e(t) = (s− 1)2.

Solution:

a) (Return and complete.)

b) From the given PDE (733), we see

e(0) =

∫ 1

0
u2
t (x, 0) + u2

x(x, 0) dx =

∫ 1

0
0 + (s− 1)2 dx = (s− 1)2. (736)

Additionally,

ė(t) =

∫ 1

0
2ututt + 2uxuxt dx =

∫ 1

0
2ut (utt − uxx)︸ ︷︷ ︸

=0

dx+ [2uxut]
1
0 = 0 + 0 = 0, (737)

where we have again utilized the PDE (733) and note the boundary terms vanish since ux = 0 on

∂(0, 1)× (0,∞).
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This shows that e(t) is constant in time. Together with the fact that e(0) = (s− 1)2, we conclude

e(t) = (s− 1)2, for all t ∈ (0,∞). (738)

�
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S17.6. Explain whether the ordinary differential equation

5y′′ +

(
y′

x

)2

+ 4y2 = 0 (739)

has a unique smooth solution in a neighborhood of the origin when initial conditions y(0) = 1 and y′(0) = 0

are applied.

Solution:

We claim the given ODE does not admit a unique smooth solution in a neighborhood of the origin with

the given conditions. Suppose y is a smooth solution to the given ODE. Then the initial conditions imply

y(x) = 1 + cx2 + δ(x) for some scalar c and δ(x) = o(x2) as x −→ 0. We verify our claim by showing c

can consistently take on either of two possible values when deriving the local behavior of y near the origin.

We do not hope to find y exactly as that would be equivalent to solving the ODE. Instead we seek an

asymptotic estimate of y, and so, as x −→ 0, observe

5y′′ = −4y2 −
(
y′

x

)2

= −4(1 + cx2 + v)2 −
(

2cx+ v′

x

)2

∼ −4(1 + cx2)2 − 4c2

= −4(1 + 2cx2 + c2x4)− 4c2

∼ −4(1 + c2).

(740)

Since v = o(x2) as x −→ 0, we know

y′′ = 2c+ v′′ ∼ 2c as x −→ 0. (741)

Combining the previous two results reveals

10c ∼ −4(1 + c2), as x −→ 0, (742)
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which occurs when

4c2 + 10c+ 4 = 0 =⇒ c =
−10±

√
102 − 4 · 4 · 4
2 · 4

= −1

2
, −2. (743)

This reveals either y ∼ 1− 2x2 as x −→ 0 or y ∼ 1− 1
2x

2 as x −→ 0. These two possibilities reveal that the

ODE does not admit a unique smooth solution in a neighborhood of the origin. �

176 Last Modified: 4/26/2019



ADE Qual Notes Heaton

S17.7. Evolutionary rock-paper-scissors are used to model interactions among bacteria. Consider three

species of bacteria, with relative abundances R (rock), P (paper), and S (scissors), respectively. You may

assume that P + R + S = 1. A R-type bacteria tends to out compete S-type bacteria, but is itself out

competed by P -type bacteria. The growth rate of the R-population is therefore proprotional to the number

of interactions in each R-type bacteria has with S-types, minus the number of interactions of P -types, i.e.,

Ṙ = R(S − P ). (744)

Similarly,

Ṡ = S(P −R) and Ṗ = P (R− S). (745)

a) Describe all of the possible behaviors of the system if R = 0 at t = 0.

b) Show that , if all three populations are present in the system at t = 0, then none of the types of

bacteria will go extinct.

Solution:

a) Since the expression for Ṙ is a multiple of R, it follows that R = 0 for all time t ∈ [0,∞). Additionally,

Ṡ = S(P − 0) = SP,

Ṗ = P (0− S) = −SP.
(746)

from which we see the only fixed points occur when either S = 0 or P = 0. Together with the

fact 1 = R + S + P = S + P , we deduce the only equilibrium points are (R,S, P ) = (0, 1, 0) and

(R,S, P ) = (0, 0, 1).

We now deduce the possible behaviors. If S = 0 at time t = 0, then (R,S, P ) = (0, 0, 1) for all time.

If P = 0 at time t = 0, then (R,S, P ) = (0, 1, 0) for all time. If S, P > 0 at time t = 0, then Ṡ > 0 for

all time, such that

lim
t→∞

(R,S, P ) = (0, 1, 0). (747)

Indeed, in this case Ṡ > 0 and S is bounded above, and the monotone convergence theorem implies

S converges. The only possible limit is the fixed point at (0, 1, 0), and so the result (747) follows.
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b) Our hypothesis asserts R > 0, S > 0, and P > 0 at time t = 0. We seek to show this same set of

inequalities holds for all time. It then suffices to show RSP > 0 for all time. Observe

d

dt
[RSP ] = ṘSP +RṠP +RSṖ

= RSP (S − P ) +RSP (P −R) +RSP (R− S)

= RSP [S − P + P −R+R− S]

= 0.

(748)

Therefore, the quantity RSP is constant in time and, thus, positive for all time. Hence none of

the types of bacteria will go extinct.

�

178 Last Modified: 4/26/2019



ADE Qual Notes Heaton

S17.8. The space y > 0 is filled with non-Newtonian fluid, initially at rest. A plate at y = 0 is set into

motion at time t = 0. The fluid velocity u(t, y) obeys the equation

ut = −τy in (0,∞)× (0,∞), (749)

with boundary conditions

u(t, 0) = 1 and u(t,+∞) = 0, (750)

and the initial condition u(0, y) = 0 for y > 0. The variable τ obeys the constitutive equation

τ = (uy)
2 . (751)

a) Try to derive a similarity solution, i.e., look for a solution of the form u(t, y) = f(η), where η = y/δ(t)

for some function δ that you should determine, by applying only the boundary condition u(t, 0) = 1.

Show that this similarity solution can neither be compatible with the other boundary condition nor

with the initial condition.

b) To find a solution that is compatible with all boundary and initial conditions, we modify the consti-

tutive equation to

τ =


(uy)

2 if uy < 0,

0 if uy ≥ 0.

(752)

Derive a similarity solution that satisfies all of the initial and boundary conditions.

Hint: Start by assuming that the solution breaks down into two parts: 0 < y < Y (t), in which τ 6= 0 and

y > Y (t) in which τ = 0. Derive continuity conditions that must be applied at y = Y (t). You need to

solve for the function Y (t) as well as for f(η).

Solution:

a) First suppose u(t, y) = f(η) and observe

ut = f ′(η)ηt = f ′(η) · −yδ
′

δ2
= −δ

′

δ
· ηf ′(η). (753)
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Similarly,

τy =
∂

∂y

[
(uy)

2
]
=

∂

∂y

[(
f ′(η)

δ

)2
]

=
2f ′(η)

δ
· f
′′(η)

δ
· 1

δ
=

2

δ3
f ′(η)f ′′(η). (754)

Consequently, the similarity solution satisfies

0 = ut + τy = −δ
′

δ
· ηf ′ + 2

δ3
f ′f ′′ =

f ′

δ

[
2f ′′

δ2
− δ′η

]
. (755)

Assuming f ′ 6= 0, we deduce
f ′′(η)

η
=
δ2δ′

2
. (756)

Since the left and right hand sides are functions of different variables, there is α ∈ R such that

δ2δ′

2
= α =⇒ δ3

3
= 2αt =⇒ δ = (6αt)1/3 = βt1/3, (757)

where β = (6α)1/3. We may assume β = 1 so that α = 1/6. Then integrating the left hand side of

(756) yields

f =
η3

36
+ c1η + c2, (758)

for scalars c1, c2 ∈ R. Applying the boundary condition u(t, 0) = 1 yields

1 = u(t, 0) = f(0) =
0

36
+ c10 + c2 =⇒ c2 = 1. (759)

The other boundary condition does not hold since

|u(t,+∞)| = lim
η→∞

|f(η)| = lim
η→∞

∣∣∣∣η3

36
+ c1η + 1

∣∣∣∣ = +∞. (760)

b) To satisfy the boundary conditions, the required continuity conditions are that u(Y (t), t) = 0 and

uy(Y (t), t) = 0. This implies there is η0 > 0 such that f(η0) = 0 and f ′(η0) = 0. Consequently,

0 = f ′(η0) =
η2

0

12
+ c2 =⇒ c2 = −η

2
0

12
, (761)
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and so

0 = f(η0) =
η3

0

36
+ c2η0 + 1 = −η

3
0

18
+ 1 =⇒ η0 = 181/3 =⇒ c2 = −182/3

12
. (762)

Therefore,

f(η) =
η3

36
− 182/3

12
· η + 1 (763)

and

η0 =
Y

δ
=⇒ Y = η0δ = 181/3t1/2. (764)

Compiling our results, we conclude

u(x, t) =


f(η) if y < Y (t),

0 otherwise,

(765)

where η = yt−1/3, Y is given in (764), and f is given in (763).

�

181 Last Modified: 4/26/2019



ADE Qual Notes Heaton

2016 Fall

F16.1 Show that u(x) = − 1
4π|x| with x ∈ R3 satisfies ∆u(x) = δ(x) in the sense of distribution, i.e., for

each smooth φ with compact support

∫
R3

u(x)∆φ(x) dx = φ(0). (766)

Solution:

First we compute the partial derivatives of u at x 6= 0. For x 6= 0 and i ∈ {1, 2, 3} observe

∂xiu = − 1

4π
· − 1

|x|2
· xi
|x|

=
xi

4π|x|3
, (767)

which implies

∂xixiu =
1

4π

[
xi · −

3

|x|4
· xi
|x|

+
1

|x|3

]
=

1

4π

[
−3x2

i

|x|5
+

1

|x|3

]
. (768)

Thus for x 6= 0

∆u =
3∑
i=1

∂xixiu =
1

4π

[
−3|x|2

|x|5
+

3

|x|3

]
=

1

4π

[
− 3

|x|3
+

3

|x|3

]
= 0. (769)

Now fix ε > 0, choose any smooth φ with compact support, and observe

∫
R3

u(x)∆φ(x) dx =

∫
R3−B(0,ε)

u(x)∆φ(x) dx︸ ︷︷ ︸
Iε

+

∫
B(0,ε)

u(x)∆φ(x) dx︸ ︷︷ ︸
Jε

= Iε + Jε, (770)

where Iε and Jε are defined to be the underbraced quantities. Integrating by parts, we see

Iε =

∫
R3−B(0,ε)

−Du(x) ·Dφ(x) dx−
∫
∂B(0,ε)

u(x)
∂φ

∂ν
dσ

=

∫
R3−B(0,ε)

∆u(x)φ(x) dx+

∫
∂B(0,ε)

∂u

∂ν
φ− u(x)

∂φ

∂ν
dσ

=

∫
∂B(0,ε)

∂u

∂ν
φ dσ︸ ︷︷ ︸

Kε

+

∫
∂B(0,ε)

−u(x)
∂φ

∂ν︸ ︷︷ ︸
Nε

dσ

= Kε +Nε,

(771)
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where Kε and Nε are the underbraced quantities, and where ν is the outward normal along B(0, ε),

thereby making −ν the outward normal along the boundary of R3 − B(0, ε). Note the third line above

holds since ∆u = 0 in R3 −B(0, ε). Next observe

|Nε| ≤
∫
∂B(0,ε)

u(x)

∣∣∣∣∂u∂ν
∣∣∣∣ dσ≤ ‖Dφ‖∞

∫
∂B(0,ε)

u(x) dσ = ‖Dφ‖∞
∫
∂B(0,ε)

1

4πε
dσ, (772)

and, since |∂B(0, ε)| = 4πε2,

|Nε| ≤ ‖Dφ‖∞ ·
4πε2

4πε
= ‖Dφ‖∞ε. (773)

We note ‖Dφ‖∞ <∞ since φ is smooth and has compact support, thereby making φxi(∂B(0, ε)) compact

for each i. Hence 0 ≤ limε→0+ |Nε| ≤ limε→0+ ‖Dφ‖∞ε = 0, which implies by the squeeze lemma that

limε→0+ Nε = 0.

For each x ∈ ∂B(0, ε) observe

∂u

∂ν
(x) = Du · ν =

3∑
i=1

xi
4πε3

· xi
ε

=
|x|2

4πε4
=

1

4πε2
=

1

|∂B(0, ε)|
. (774)

Consequently,

lim
ε→0+

Kε = lim
ε→0+

∫
∂B(0,ε)

∂u

∂ν
φ dσ = lim

ε→0+
−
∫
∂B(0,ε)

φ dσ = φ(0). (775)

Next employing the use of polar coordinates reveals

|Jε| ≤
∫
B(0,ε)

u|∆φ| dx≤ ‖D2φ‖∞
∫
B(0,ε)

dx

4π|x|
= ‖D2φ‖∞

∫ ε

0

∫
∂B(0,r)

1

4πr
dσdr, (776)

and the integrand simplifies to yield

|Jε| ≤ ‖D2φ‖∞
∫ ε

0
r dr= ‖D2φ‖∞

ε2

2
−→ 0 as ε −→ 0. (777)
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Whence limε→0+ Jε = 0. Compiling our results, we conclude

∫
R3

u(x)∆φ(x) dx = lim
ε→0+

Iε + Jε = lim
ε→0+

Kε +Nε + Jε = φ(0) + 0 + 0 = φ(0), (778)

as desired. �
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F16.2. Consider the following nonlinear drift-diffusion equation

θt = ∆(θ2) +∇ · (xθ) in Rn × (0,∞). (779)

a) Let θ1 and θ2 be smooth nonnegative solutions of the given PDE with ordered initial data θ1(x, 0) ≤

θ2(x, 0). Show then that θ1(x, t) ≤ θ2(x, t) for all t > 0.

b) Show that for any constant C > 0 the function U(x) := max
[
(C − |x|

2

4 ), 0
]

is a weak stationary

solution of the above equation, i.e.,

∫
Rn

(
∇(U2) + xU

)
· ∇φ(x) dx = 0 (780)

for any compactly support and smooth function φ : Rn → R.

Solution:

a) Set w := θ2 − θ1. It suffices to show w ≥ 0 in R× (0,∞). By our hypothesis, w ≥ 0 on R× {t = 0},

and

wt = ∆
(
w (θ2 + θ1)︸ ︷︷ ︸

=:φ

)
+∇ · (xw) = ∆(wφ) +∇ · (wx). (781)

Assume ∆φ ∈ L∞(R × (0,∞)) and choose M > ‖∆φ‖L∞(Rn)×(0,∞) + n + 1. Now let ε > 0 and set

v := w+ ε exp(Mt). This implies v ≥ ε > 0 on Rn×{t = 0}. By way of contradiction, suppose there

exist a point in Rn × (0,∞) at which v = 0. Let (x, t) ∈ Rn × (0,∞) be such a point with t > 0 the

smallest time at which this occurs. Then vt(x, t) ≤ 0 and, since x is a local minimizer of v(·, t), we
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see ∆v(x, t) ≥ 0. Consequently, at (x, t),

0 ≥ vt = wt +Mε exp(Mt)

= ∆(wφ) +∇ · (wx) +Mε exp(Mt)

= w∆φ+ 2Dw ·Dφ+ φ∆w +∇ · (wx) +Mε exp(Mt)

= w∆φ+ φ∆v + nw +Dw · x+Mε exp(Mt)

≥ w∆φ+ nw +Mε exp(Mt)

= ε exp(Mt) (M −∆φ− n)

≥ ε

> 0,

(782)

which implies 0 > 0, a contradiction. Note the fourth and fifth lines hold since Dw = Dv = 0

at (x, t) and since φ ≥ 0, by hypothesis, and ∆w = ∆v ≥ 0. The sixth line holds since v = 0 and the

seventh line holds due to our choice of M and the fact the exponential term is at least unity. This

contradiction proves v > 0 in Rn × (0,∞). Letting ε −→ 0+, we deduce

w(x, t) = lim
ε→0+

w(x, t) + ε exp(Mt) = lim
ε→0+

v(x, t) ≥ lim
ε→0+

0 = 0, for all (x, t) ∈ Rn × (0,∞), (783)

and the proof is complete.

b) Let r := 2
√
C and note the support of U is precisely B(0, r). Thus, for each φ ∈ C∞c (Rn × (0,∞)),∫

Rn

(
∇(U2) + xU

)
· ∇φ dx =

∫
Rn

U (2∇U + x) · ∇φ dx

=

∫
B(0,r)

U (2∇U + x) · ∇φ dx

=

∫
B(0,r)

U · 0 · ∇φ dx

= 0,

(784)

where, in B(0, r),

x+ 2∇U = x+ 2∇
[
C − |x|

2

4

]
= x+ 2 · −x

2
= 0. (785)

�
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F16.3. Consider the system of ODE for the pair (x(t), v(t)) of real-valued functions


ẋ = v,

v̇ = −1

2
x(x2 − 1)− v,

(786)

for t > 0, with initial conditions x(0) = x0 and v(0) = v0.

a) Find all stationary points and sketch the local trajectories.

b) Define a nonzero function E(a, b) such that E ≥ 0 and Ė(x(t), v(t)) ≤ 0 for all t > 0 when (x(t), v(t))

solves the ODE system.

Solution:

a) Since ẋ = 0 if and only if v = 0, we see the equilibrium points are (0, 0) and (±1, 0). The Jacobian

matrix is

J(x, v) =

 ∂ẋ/∂x ∂ẋ/∂v

∂v̇/∂x ∂v̇/∂v

 =

 0 1

−3x2+1
2 −1

 . (787)

This implies

J(0, 0) =

 0 1

1
2 −1

 , (788)

which has eigenvalues λ that satisfy

0 = λ(λ+ 1)− 1

2
=⇒ 0 = 2λ2 + 2λ− 1 =⇒ λ =

−2±
√

4− 4(−2)

4
=
−1±

√
3

2
, (789)

and so (0, 0) is a saddle. Also,

J(±1, 0) =

 0 1

−1 −1

 , (790)

which has eigenvalues λ that satisfy

0 = λ(λ+ 1) + 1 = λ2 + λ+ 1 =⇒ λ =
−1±

√
12 − 4 · 1
2

=
−1± i

√
3

2
, (791)

and so around (±1, 0) are inward pointing spirals. A sketch is given in the figure below.
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Figure 21: Phase plane for F16.3.

b) Consider an analogous system (z(t), w(t)) without the damping term, i.e.,


ż = w,

ẇ = −1

2
z(z2 − 1).

(792)

Then

dw

dz
=
ẇ

ż
=
−1

2z(z
2 − 1)

w
=⇒ 0 = wdw +

(
z3

2
− z

2

)
dz =⇒ C =

w2

2
+
z4

8
− z2

4
. (793)

From this, we define the energy

E(a, b) :=
b2

2
+
a2

4

(
a2

2
− 1

)
+ 1. (794)

If |a| ≥ 2, then

E(a, b) ≥ b2

2
+
a2

4
· 0 + 1 ≥ 0. (795)
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If |a| < 2 then

E(a, b) ≥ b2

2
+
a2

4
· (−1) + 1 ≥ 0− 22

4
· −1 + 1 = 0. (796)

This shows E(a, b) ≥ 0. Lastly, observe

Ė(x, v) = vv̇ +
x

2
(x2 − 1)ẋ = v

(
−x

2
(x2 − 1)− v

)
+
x

2
(x2 − 1)v = −v2 ≤ 0. (797)

�

Remark: Here we give an alternative solution to F16.3b. Note the ODE system models a damped

equation, with the undamped form being

˙̃x = ṽ, ˙̃v = −1

2
x̃
(
x̃2 − 1

)
, (798)

and note the undamped (x̃, ṽ) system is Hamiltonian since

∂ ˙̃x

∂x̃
+
∂ ˙̃v

∂ṽ
= 0 + 0 = 0. (799)

Consequently, there exists a function H(x̃, ṽ) such that Hx̃ = − ˙̃v and Hṽ = ˙̃x. Integrating reveals

H =

∫
− ˙̃v dx̃ =

∫
1

2
x̃
(
x̃2 − 1

)
dx =

1

8

(
x̃2 − 1

)2
+ f(ṽ), (800)

for some function f(ṽ). Similarly, there exists g(x̃) such that

H =

∫
˙̃x dṽ =

ṽ2

2
+ g(x̃). (801)

Combining these results we write

H(x̃, ṽ) =
1

8

(
x̃2 − 1

)2
+
ṽ2

2
. (802)

Returning to the damped ODE system, set E(x, v) := H(x, v) and note E(x, v) ≥ 0 since both terms in

(802) are squared. Moreover,

Ė =
d

dt

[
1

8
(x2 − 1)2 +

v2

2

]
=
x

2
(x2 − 1)ẋ+ vv̇ =

x

2
(x2 − 1)v + v

[
−x

2
(x2 − 1)− v

]
= −v2 ≤ 0. (803)

4

189 Last Modified: 4/26/2019



ADE Qual Notes Heaton

F16.4. Consider φ : Rn × (0,∞)→ R solving the Hamilton-Jacobi equation

φt + |∇φ| = 0, (804)

with initial data φ(x, 0) = max(|x|2 − 1, 0). Show that φ(x, t) = 0 when t = |x| − 1.

Solution:

Define g : Rn → R by g(x) := max(|x|2− 1, 0) and the Hamiltonian H : Rn → R by H(p) = |p|. Then the

PDE may be rewritten as 
φt +H(Dφ) = 0 in Rn × (0,∞),

φ = g on Rn × {t = 0}.
(805)

Then the associated Lagrangian L is given by the Fenchel transform

L(v) = max
p∈Rn

p · v −H(p) = max
p∈Rn

p · v − |p|. (806)

If |v| > 1, then observe letting p = µv for a scalar µ ∈ R yields

lim
µ−→∞ p · v − |p| = lim

µ−→∞µ|v|
2 − µ|v| = |v|(|v| − 1) lim

µ−→∞µ = +∞. (807)

Alternatively, if |v| < 1, then

p · v − |p| ≤ |p||v| − |p| = |p|(|v| − 1) ≤ 0, (808)

with equality holding on the right hand side when p = 0. This implies

L(v) =


+∞ if |v| > 1,

0 if |v| ≤ 1.

(809)

By the Hopf-Lax formula,

φ(x, t) = min
y∈Rn

t · L
(
x− y
t

)
+ g(y) = min

y∈A
g(y), (810)
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where A := {y ∈ Rn : |x− y| ≤ t}. Now, if t = |x| − 1 and y ∈ A, then

|x| − |y| ≤ |x− y| ≤ t = |x| − 1 =⇒ |y| ≥ 1 =⇒ |y|2 − 1 ≥ 0 =⇒ g(y) = |y|2 − 1. (811)

Of course, min|y|≥1 g(y) = min|y|≥1 |y|2 − 1 = 0. Whence for t = |x| − 1 we conclude

u(x, t) = min
|x−y|≤t

g(y) = 0, (812)

as desired. �
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F16.5. Consider the smooth solution u of the Dirichlet problem


−∇ · (β(x)∇u(x)) = 0 in Ω,

u = g on ∂Ω,

(813)

where Ω is a smooth, bounded domain in Rn and the functions β : Ω → (0,∞) and g : ∂Ω → R are

smooth. Suppose there is a bijective map φ : Ω→ Ω̂ satisfying

Dφ(x) =
1

β(x)
Q(x), (814)

where Q satisfies det(Q) = 1 and QTQ = I. Show that then u(x) := û(φ(x)) is the smooth solution of


−∆û(x̂) = 0 in Ω̂,

û(x̂) = g(φ−1(x̂)) on ∂Ω̂.

(815)

Solution:

For each function f : Ω→ R, let f̂ : Ω̂→ R be defined by f̂(x̂) := f(φ(x)). For differentiable f ,

fxi(x) =

n∑
j=1

f̃xj (φ(x))(φj)xi(x) =⇒ fi = f̂jφj,i in Ω, (816)

where on the right hand side we have adopted the compact tensor notation and repeated index summation

convention. Now let q ∈ C∞c (Ω). Integration by parts yields

0 =

∫
Ω
−∇ · (β∇u)q dx =

∫
Ω
βuiqi dx =

∫
Ω
βûjφj,iq̂kφk,i dx =

∫
Ω

1

β
ûjQj,iQ

T
i,kq̂k dx, (817)

where the final equality holds by (814). Since Q is orthogonal, it follows that

0 =

∫
Ω

1

β
ûjδj,kq̂k dx =

∫
Ω

1

β
ûj q̂j dx =

∫
Ω̂
ûj q̂j dx̂, (818)

where the final equality holds since the determinant of the Jacobian matrix is |Dφ| = |Q/β| = 1/β, again
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noting Q is orthogonal. Integrating by parts once more, we see

0 =

∫
Ω̂
−ûjj q̂ dx̂. (819)

Because (819) holds for arbitrarily chosen q, this holds for all q̂ ∈ C∞c (Ω̂), thereby revealing −∆û = 0 in

Ω̂. Lastly, let x̂ ∈ ∂Ω̂. Since φ is a smooth bijection, there exists x ∈ ∂Ω such that x̂ = φ(x), and so

û(x̂) = û(φ(x)) = u(x) = g(x) = g(φ−1(x̂)). (820)

This completes the proof. �
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F16.6. Let D be a subset of Rn. Show that the smallest C for the Poincaré Inequality

∫
D
u2 dx ≤ C

∫
D
|∇u|2 dx, for all u ∈ H1

0 (D), (821)

can be obtained from an eigenvalue problem. State the eigenvalue problem and explain why.

Solution:

Consider32 the eigenvalue problem 
−∆u = λu in D,

u = 0 on ∂D,

(822)

which has the weak formulation for u ∈ H := H1
0 (D) given by

∫
D
Du ·Dv − λuv dx = 0, for all v ∈ H. (823)

The Laplacian operator L = −∆ is symmetric and elliptic since

Lu = −
n∑

i,j=1

δijuxixj =⇒
n∑

i,j=1

δijξiξj = |ξ|2, for all ξ ∈ Rn. (824)

By the theory of elliptic operators,33 this implies L has a countable set of orthogonal eigenfunctions

{φn}n∈N ⊆ H that forms a basis for L2(D) and each φn ∈ H has an associated eigenvalue λn. Additionally,

λn > 0 for each n ∈ N and lim
n→∞

λn = +∞. This Hilbert space H is equipped with the scalar product 〈·, ·〉

given by

〈u, v〉 :=

∫
D
∇u · ∇v dx, (825)

with the norm denoted ‖u‖H :=
√
〈u, u〉.

Now let u ∈ H ⊂ L2(D). Since {φn}n∈N forms a basis for L2(D), there exists scalars {cn}n∈N such that

u =
∑
n∈N

cnφn. (826)

32This is similar to F11.8.
33See §6.5 of the PDE text by Evans.

194 Last Modified: 4/26/2019



ADE Qual Notes Heaton

We may assume the collection {φn}n∈N is orthonormal. For each m,n ∈ N, this implies

∫
D
λnφnφm dx =

∫
D
∇φn · ∇φm dx = 〈φn, φm〉 = δnm, (827)

and so

‖u‖2L2(D) =

∫
D
u2 dx=

∑
n,m∈N

cncm

∫
D
φnφm dx =

∑
n,m∈N

cncm
δnm
λn

=
∑
n∈N

c2
n

λn
. (828)

Again using the orthonormality of {φn}n∈N, we see

‖u‖2H = 〈
∑
n∈N

cnφn,
∑
m∈N

cmφm〉 =
∑

n,m∈N
cncm 〈φn, φm〉 =

∑
n,m∈N

cncmδnm =
∑
n∈N

c2
n. (829)

If u ∈ H is nonzero and such that the inequality in (821) is an equality, then

‖u‖2H = C‖u‖2L2(D) = C
∑
n∈N

c2
n

λn
≤ C

λ1

∑
n∈N

c2
n =

C

λ1
‖u‖2H , (830)

noting {λn}n∈N is an increasing sequence. Dividing by ‖u‖2H and multiplying by λ1, the above inequality

becomes λ1 ≤ C. Since the inequality in (830) becomes an equality precisely when C = λ1, we see the

choice of C = λ1 is possible. We therefore deduce the smallest possible value for C is C = λ1. This shows

the smallest value of C has been obtained from the eigenvalue problem, as desired. �
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F16.7. Consider the one dimensional reaction diffusion equation34

ut − uxx = f(u) in R× (0,∞), (831)

where f(0) = f(1) = 0, f ′(0) > 0, and 0 < f(u) < f ′(0)u for 0 < u < 1. We would like to show there is a

positive traveling wave solution with speed c, i.e., of the form

u(x, t) = U(x− ct) > 0 (832)

satisfying

u(−∞) = 1, u(+∞) = 0, (833)

for the range of speeds c ≥ 2
√
f ′(0). To show our claim, first observe U and V := U ′ satisfy

U ′ = V, V ′ = −cV − f(U). (834)

We will analyze the (U, V ) phase plane to find the traveling wave solution, which connects the steady states

(0, 0) and (1, 0) of the system.

a) By studying the ODE near (0, 0), conclude no positive wave solution exists if c < 2
√
f ′(0). By

studying the ODE system near (1, 0), show that there is at most one traveling wave solution.

b) For c ≥ 2
√
f ′(0), let λ be one of the eigenvalues at (0, 0). Show that V ′/U ′ < λ on the line V = λU .

c) Using b) and other observations from the phase plane, show there is exactly one trajectory connecting

(1, 0) to (0, 0) in the (U, V ) system when c ≥ 2
√
f ′(0).

Solution:

a) The Jacobian matrix J(U, V ) for this system is given by

J(U, V ) =

 ∂U ′/∂U ∂U ′/∂V

∂V ′/∂U ∂V ′/∂V

 =

 0 1

−f ′(U) −c

 , (835)

34This prompt is excessively wordy and is quite similar to the style of prompts given by Roper in 266A in Fall 2016.
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which has eigenvalues that satisfy

0 = λ(λ+ c) + f ′(u) = λ2 + λc+ f ′(u) =⇒ λ =
−c±

√
c2 − 4f ′(U)

2
. (836)

Note (U, V ) = (0, 0) and (U, V ) = (1, 0) are fixed points of the ODE system since f(0) = f(1) = 0.

If c < 2
√
f ′(0), then c2 − 4′f(0) < 0, which implies J(0, 0) has eigenvalues λ with Re(λ) = −c/2

and Im(λ) = ±
√

4f ′(0)− c2/2, which implies the origin forms a spiral. Regardless of its stability,

the origin forming a spiral would imply there exists points along each trajectory where U ≤ 0, a con-

tradiction to the fact U is assume to be positive. Thus, no positive wave solution exists if c < 2
√
f ′(0).

We now analyze the behavior near (U, V ) = (1, 0). Taylor’s theorem asserts for each u ∈ (0, 1) there

exists ξu ∈ (0, u) such that

f(u) = f(0) + f ′(0)u+
f ′′(ξu)

2
· u2. (837)

Combined with the fact f(0) = 0 and 0 < f(u) < f ′(0)u, we see f ′′ < 0 in (0, 1). Thus, as f is

concave down on (0, 1) and decreasing as it approaches u = 1 where f(1) = 0, we deduce f ′(1) < 0.

Consequently, (836) implies the eigenvalues of J(1, 0) are real-valued, with one positive and one

negative. This shows (1, 0) forms a saddle, for which there is a single stable manifold originating

along a trajectory from (0, 0). (The single other stable manifold originates at infinity.)

b) For c ≥ 2
√
f ′(0) and v = λu, observe

v′

u′
=
−cv − f(u)

v

=
−cλu− f(u)

λu

= −c− 1

λ

f(u)

u

< −c− 1

λ
f ′(0)

=
1

λ

(
−cλ− f ′(0)

)
= λ.

(838)

The first equality follows from the prompt. The second equality holds since we are analyzing al-

ong the line v = λu. The fourth equality follows from the fact 0 < f(u) < f ′(0)u. The final equality
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then follows from the eigenvalue equation (836).

c) Note the eigenvalues of J(0, 0) are nonpositive (for simplicity, we assume they are both negative). Let

us consider the region R enclosed by the line V = 0, U = 1, and V = λU , with λ an eigenvalue of

J(0, 0). Along the curve V = λU in {U > 0}×{V < 0} we have U ′ = V < 0, and so our earlier result

reveals
dV

dU
=
V ′

U ′
< λ < 0 =⇒

∣∣∣∣dVdU

∣∣∣∣ > λ and V ′ > 0. (839)

In plain words, this reveals trajectories along V = λU point up and to the left into R. Additionally,

along the line U = 1 in {U > 0}× {V < 0} we have U ′ < 0 and V ′ < 0. Again, trajectories remain in

R. Along V = 0 we see U ′ = 0 and V ′ = −f(U) < 0 for U ∈ (0, 1). These results imply the unstable

trajectory leaving (1, 0) enters into R and is contained inside R, with the only possible termination

at the fixed point (0, 0). An illustration is provided below.

U

V

V = λU
U = 1

Figure 22: Illustration for F16.7c with the region R shaded.

�
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F16.8. Let u be a solution of the wave equation
utt − c2∆u = 0 in R3 × (0,∞),

u = φ on R3 × {t = 0},

ut = ψ on R3 × {t = 0},

(840)

where the initial data is supported in the ball of radius R about the origin. Let x0 be a point in R3

with |x0| > R.

a) Find the largest time T1 for which we can guarantee that u(x0, t) must be zero for all t ∈ [0, T1).

b) Find the smallest time T2 for which we can guarantee that u(x0, t) must be zero for all t > T2.

Solution:

a) First set v(x, t) := u(|c|x, t). Then


vtt −∆v = 0 in R3 × (0,∞),

v = φ̃ on R3 × {t = 0},

vt = ψ̃ on R3 × {t = 0},

(841)

where φ̃(x) := φ(|c|x) and ψ̃(x) := ψ(|c|x). Now set

r :=
|x0| −R
|c|

, (842)

and define the wave energy e : [0, r)→ R by

e(t) :=
1

2

∫
S(t)

v2
t + |Dv|2 dx, (843)

where S(t) := B(x0/|c|, r − t) and the arguments of v in the integrand are implicit. Then, by the

definition of R and choice of the constant r and function v, e(0) = 0. Differentiating in time yields

ė =

∫
S(t)

vtvtt +Dv ·Dvt dx+
1

2

∫
∂S(t)

(
v2
t + |Dv|2

)
· (−ν) · ν dσ, (844)

where −ν is the Eulerian velocity of the boundary ∂S(t) and ν is the outward normal along the
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boundary of S(t). Integrating by parts yields

ė =

∫
S(t)

vt (vtt −∆v)︸ ︷︷ ︸
=0

dx+

∫
∂S(t)

−1

2

(
v2
t + |Dv|2

)
+ vt

∂v

∂ν
dσ, (845)

where the first integral evaluates to zero by (841). Noting that

∣∣∣∣vt ∂v∂ν
∣∣∣∣ ≤ |vt||Dv| ≤ 1

2

(
v2
t + |Dv|2

)
, (846)

we see

ė =

∫
∂S(t)

−1

2

(
v2
t + |Dv|2

)
+ vt

∂v

∂ν
dσ ≤ 0. (847)

This shows e is monotonically decreasing in time. Thus e(t) ≤ e(0) = 0. However, since the integrand

of e is nonnegative, e(t) ≥ 0 for all t ∈ [0, r]. Therefore e(t) = 0 for all t ∈ [0, r). This implies v is

constant in the cone {(x, t) : t ∈ [0, r), x ∈ S(t)}. The fact v(x0/|c|, 0) = 0 then implies v = 0 inside

the cone. Therefore, at the tip of the cone, we see limt→r− v(x0/|c|, t) = 0, and so the longest time T1

at which we can guarantee 0 = u(x0, t) = v(x0/|c|, t) for t ∈ [0, T1) is T1 = r.

b) The result in a) showed that it would take at least time

T1 =
|x0| −R
|c|

. (848)

This is simply derived from the distance of x0 to the closest possible point in the support of the

initial data divided by the wave’s propagation speed. Similarly, the smallest time T2 for which we can

guarantee u must be zero for all t > T2 is the distance of x0 to the farthest away point that can be in

the support of the initial data divided by the wave’s propagation speed, i.e.,

T2 =
|x0|+R

|c|
. (849)

Note this follows since, by Huygen’s principle, the fact our PDE is in R3 implies the solution u only

depends on the boundary information of the wavefront. So, once both wavefronts pass a point x,

u(x, t) will thenceforth be zero.

�
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2016 Spring

S16.1.

a) Show that the point (x, y) = (−1, 0) is a stable fixed point for the system of ODE

ẋ = 4y3, ẏ = −2(x+ 1). (850)

b) Now consider the following modification of the system of ODE:

ẋ = 4y3 + (x+ 1)− (x+ 1)
[
(x+ 1)2 + y4

]
,

ẏ = −2(x+ 1) + 2y3 − 2y3
[
(x+ 1)2 + y4

]
.

(851)

Show the modified system has a limit cycle.

Solution:

a) First note
∂ẋ

∂x
+
∂ẏ

∂y
=

∂

∂x

[
4y3
]

+
∂

∂x
[−2(x+ 1)] = 0, (852)

and so the system in Hamiltonian. Therefore, there exists a function H(x, y) such that Hx = −ẏ and

Hy = ẋ. Integrating reveals

H(x, y) =

∫
ẋ dy = y4 + f(x), (853)

for some function f(x). Similarly, there exists a function g(y) such that

H(x, y) =

∫
−ẏ dx = (x+ 1)2 + g(y). (854)

Combining these results, we may assume

H(x, y) = y4 + (x+ 1)2. (855)

Note H(x, y) > 0 for all (x, y) 6= (−1, 0), H(−1, 0) = 0, and

Ḣ(x, y) = Hxẋ+Hyẏ = −ẏẋ+ ẋẏ = 0. (856)
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In consideration of the Lyapunov function H(x, y), we conclude, by Lyapunov’s theorem, that (−1, 0)

is a stable fixed point.

b) Consider the same function H(x, y) as in a). Differentiating in time reveals

Ḣ(x, y) = 2(x+ 1)ẋ+ 4y3ẏ

= 2(x+ 1)
(
4y3 + (x+ 1)− (x+ 1)

[
(x+ 1)2 + y4

])
+ 4y3

(
−2(x+ 1) + 2y3 − 2y3

[
(x+ 1)2 + y4

])
= 2(x+ 1)2 − 2(x+ 1)2

[
(x+ 1)2 + y4

]
+ 8y6 − 8y6

[
(x+ 1)2 + y4

]
=
[
2(x+ 1)2 + 8y6

] (
1−

[
(x+ 1)2 + y4

])
= 2

[
(x+ 1)2 + 4y6

]
[1−H(x, y)] .

(857)

Now define S := {(x, y) : H(x, y) = 1}. Consider any trajectory originating from a point in (a, b) ∈ S.

Since H(a, b) = 1, we see

Ḣ(a, b) = 2
[
(a+ 1)2 + 4b6

]
[1−H(a, b)] = 2

[
(a+ 1)2 + 4b6

]
· 0 = 0. (858)

This implies the H will remain constant in time, i.e., the trajectory will be contained in S. Now let

R := {(x, y) : 1
2 ≤ H(x, y) ≤ 3

2}. Note R is closed since H is convex and the level sets of convex sets

are closed. Also, R is bounded since |H| −→ ∞ as ‖(x, y)‖ −→ ∞. Additionally, R contains a trajectory

since S ⊂ R. Lastly, R does not contain any fixed point since (−1, 0) /∈ R as H(−1, 0) = 0 < 1
2 .

Whence the Poincaré-Bendixson theorem asserts R contains a closed orbit, i.e., a limit cycle.

�
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S16.2. Consider the conservation law

g(u)t + f(u)x = 0 in R× (0,∞), (859)

where f : R→ R and g : R→ R.

a) Derive the Rankine-Hugoniot condition for shock speeds.

b) Use the result from a) to solve the following Riemann problem with g(u) = u2/2, f(u) = u3/3, and

with initial data

u(x, 0) =


1 if x ∈ (0, 1/3),

0 otherwise.

(860)

Solution:

a) (Return and complete.)

b) We proceed by using the method of characteristics. Let F (p, q, z, x, t) = z(q + zp). Taking p = ux,

q = ut, and z = u yields F = 0 and gives rise to the ODE system for the characteristics:
ẋ(s) = Fp = z2 x(0) = x0,

ṫ(s) = Fq = 1 t(0) = 0,

ż(s) = Fpp+ Fqq = z2p+ zq = 0, z(0) = g(x0),

(861)

where we take g(α) := u(α, 0). This implies t = s and z is constant along characteristics. Thus,

x(t) = x0 +

∫ t

0
ẋ(τ) dτ = x0 +

∫ t

0
z2(τ) dτ = x0 + tg2(x0) =


x0 + t if x0 ∈ (0, 1/3),

x0 otherwise.

(862)

So, if 0 ≤ x0 = x − t < 1/3, then u(x, t) = g(x0) = 1. And, if x ≤ 0 or x > 1/3, then u(x, t) =

g(x0) = 0. Lastly, we must consider the case when 0 ≤ x ≤ t. If u is of the form u(x, t) = v(x/t) in

this region, then

0 = g(u)t + f(u)x = vv′ · − x
t2

+ v2v′ · x
t

=
vv′

t

[
v − x

t

]
. (863)

Thus taking v = x/t yields a solution of the desired form, and this is the unique option of this form

that would yield continuity of u at the boundaries x = 0 and x = t.
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We now observe the characteristics crash immediately at (1, 0), and so a shock occurs. Let (s(t), t)

be a parameterization of this curve. Then s(0) = 0 and our RH condition from above yields

ṡ(t) =
f(u`)− f(ur)

g(u`)− g(ur)
=

1
3 − 0
1
2 − 0

=
2

3
. (864)

Consequently,

s(t) =
2t+ 1

3
in [0, 1], (865)

and so, in R× (0, 1),

u(x, t) =


x/t if 0 ≤ x ≤ t,

1 if t ≤ x ≤ (2t+ 1)/3,

0 otherwise.

(866)

This limited time interval is because at time t = 1 we also find another collision (see Figure 23 below)

at (s(1), 1) = (1, 1). Again using the RH condition reveals

ṡ(t) =
f(u`)− f(ur)

g(u`)− g(ur)
=

1
3(x/t)3 − 0
1
2(x/t)2 − 0

=
2x

3t
. (867)

Taking x = s(t), using separation of variables, and then using the condition s(1) = 1 reveals s(t) = t2/3

in [1,∞). Whence in R× (1,∞)

u(x, t) =


x/t if 0 ≤ x ≤ s(t) = t2/3,

0 otherwise.

(868)
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t

x

Figure 23: Plot of u(x, t). In the light gray region, u = x/t. In the dark gray region, u = 1, and u = 0
elsewhere.

�
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S16.3. Solve

∆u = δ(x− x0)δ(y − y0)δ(z − z0) in [−1, 1]×R×R. (869)

You may assume u −→ 0 as |y| −→ +∞ or |z| −→ +∞, and the boundary conditions on the walls x = 0 and

x = 1 are

u(0, y, z) =
∂u

∂x

∣∣∣∣
1,y,z

= 0. (870)

Seek a solution of the form

u(x, y, z) =
1

(2π)2

∫∫
ei(`y+mz)û(x, `,m) d`dm, (871)

and find the function û. You do not need to evaluate this integral for u.

Solution:

It suffices to identify û since then u is given by (871). Using the properties of derivatives with the Fourier

transform, we see

∆u =
1

(2π)2

∫∫
ei(`y+mz)

[
ûxx − (m2 + `2)û

]
d`dm. (872)

This implies

ûxx − (m2 + `2)û =

∫∫
e−i(`y+mz)δ(x− x0)δ(y − y0)δ(z − z0) dydz = e−i(`y0+mz0)δ(x− x0). (873)

Note also

u(0, y, z) = 0 =⇒ û(0, `,m) = 0 and ux(1, y, z) = 0 =⇒ ûxx(1, `,m) = 0. (874)

Therefore, we seek a Green’s function û(x, `,m) such that


ûxx − α2û = e−i(`y0+mz0)δ(x− x0) in [0, 1]×R×R,

û = 0 on {x = 0} ×R×R,

ûx = 0 on {x = 1} ×R×R,

(875)
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where α :=
√
`2 +m2. The associated homogeneous ODE has a solution of the form ce±αx, and so

û(x, `,m) =


c1e

αx + c2e
−αx if x < x0,

c3e
αx + c4e

−αx if x > x0.

(876)

The first boundary condition reveals

0 = c1e
0 + c2e

0 = c1 + c2 =⇒ c2 = −c1. (877)

Additionally,

0 = α
(
c3e

α − c4e
−α) =⇒ c4 = c3e

2α. (878)

By the continuity of û in x, we see

c1

(
eαx0 − e−αx0

)
= lim

x→x−0
û = lim

x→x+
0

û = c3

(
eαx0 + eα(2−x0)

)
=⇒ c1 =

eαx0 + eα(2−x0)

eαx0 − e−αx0
· c3. (879)

Lastly, considering an arbitrarily small neighborhood about x0 reveals

e−i(`y0+mz0) = lim
ε→0+

∫ x0+ε

x0−ε
e−i(`y0+mz0)δ(x− x0) dx

= lim
ε→0+

∫ x0+ε

x0−ε
ûxx − α2û dx

= ûx(x+
0 , `,m)− ûx(x−0 , `,m).

(880)

Thus,

e−i(`y0+mz0) = c3α
(
eαx0 − eα(2−x0)

)
− c1α(eαx0 + eαx0) (881)

Combining (879) and (881), one may readily solve for c1 and c3 (upon application of some tedious algebra).

For such values c1 and c2, we deduce

û(x, `,m) =


c1 (eαx − e−αx) if x < x0,

c3

(
eαx + eα(2−x0)

)
if x > x0,

(882)

and we are done. �
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S16.4. Solve the Hamilton-Jacobi equation

φt + |φx| = 0, x ∈ R, t > 0 (883)

with initial data

φ(x, 0) =


0 if x ≤ 0,

1 if x > 0.

(884)

Solution:

Define the Hamiltonian H : R→ R by H(p) := |p| and set g(x) to be zero if x ≤ 0 and 0 otherwise. Then

the PDE may be written as


φt +H(Dφ) = 0 in R× (0,∞),

φ = g on R× {t = 0}.
(885)

Taking the Fenchel transform gives the Lagrangian L to be

L(v) := sup
p∈R

pv −H(p) = sup
p∈R

pv − |p|. (886)

If v > 1, then observe

lim
p−→+∞

pv −H(p) = (v − 1) lim
p−→+∞

p = +∞, (887)

and if v < −1, then

lim
p−→−∞ pv −H(p) = (v + 1) lim

p−→−∞ p = +∞. (888)

Now, if |v| ≤ 1, then

pv −H(p) = pv − sgn(p) · p = p (v − sgn(p)) ≤ 0, (889)

with strict equality precisely when p = 0. Combining (886), (887), (888), and (889), we deduce

L(v) =


+∞ if |v| > 1,

0 if |v| ≤ 1.

(890)
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From the Hopf-Lax formula, we then know

u(x, t) = min
y∈R

(
t · L

(
x− y
t

)
+ g(y)

)
. (891)

By (890), the Lagrangian simplifies this to

u(x, t) = min
|x−y|≤t

g(y). (892)

Note |x− y| ≤ t implies y is bounded below by x− t. Thus there is y ≤ 0 in the set of all feasible y (i.e.,

points such that |x − y| ≤ t) precisely when x − t ≤ 0. Consequently, using this and the definition of g

reveals

u =


0 if x ≤ t,

1 if x ≥ t.
(893)

�
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S16.5. A toy model of the propagation of an action potential along a neuron is given by the PDE

ut = uxx + f(u), (894)

where f(u) may be assumed to be continuously differentiable. Propagating action potential solutions of

this PDE are given by traveling waves, i.e., solutions of the form u(x, t) = u(x−ct), that tend to (different)

constant values: u −→ u−? as x −→ −∞ and u −→ u+
? as x −→ +∞.

a) Explain why the limits as x −→ ±∞must correspond to values u±? at which f(u±? ) = 0 and f ′(u±? ) ≤ 0.

b) Suppose u−? < u+
? and u(x− ct) is monotone increasing in η = x− ct. prove the wave moves leftward

(i.e., c < 0) or rightward according to whether

∫ u+
?

u−?

f(u) du R 0. (895)

c) Now consider the specific function f(u) = −(u − u0)(u − u1)(u − u2), where u0 < u1 < u2 are all

constants. Guessing that du/dη = B(u − u0)(u − u2) for some constant B, find the traveling wave

solution u(η) and its velocity c.

Solution:

a) Assume u(x, t) = v(x− ct) = v(η), where η := x− ct. Plugging this into the PDE reveals

0 = ut − uxx − f(u) = −cv′ − v′′ − f(v) =⇒ v′′ = −cv′ − f(v). (896)

This may be rewritten as the ODE system

v′ = w, w′ = −cw − f(v), (897)

Note the fixed points of the ODE system occur at all points of the form (v, 0), where f(v) = 0. For

fixed t, since η −→ ±∞ as x −→ ±∞, it follows that in order for v to converge to a value u±? we must

have f(u±? ) = 0. The associated Jacobian matrix is given by

J(v, w) :=

 ∂v′/∂v ∂v′/∂w

∂w′/∂v ∂w′/∂w

 =

 0 1

−f ′(v) −c

 . (898)
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The eigenvalues to J(v, w) satisfy

0 = λ(λ+ c) + f ′(v) =⇒ λ =
−c±

√
c2 − 4f ′(v)

2
. (899)

For a fixed point (v, 0), this shows that if f ′(v) > 0 then (v, 0) forms a stable node. However, this

cannot be the case if there is a trajectory leaving the fixed point (u−? , 0) and terminating at (u+
? , 0).

Consequently, we must have f ′(u±? ) ≤ 0.

b) Since u = u(η), we may use the change of variables with du = u′(η) dη to write

∫ u+
?

u−?

f(u) du =

∫ ∞
−∞

f(u)u′ dη =

∫ ∞
−∞

[−u′′ − cu′]u′ dη. (900)

However, because u′ −→ 0 as η −→ ±∞, we see

∫ ∞
−∞

u′u′′ dη = −
∫ ∞
−∞

u′′u′ dη +
[
(u′)2

]∞
−∞︸ ︷︷ ︸

=0

=⇒ 2

∫ ∞
−∞

u′u′′ dη = 0. (901)

Therefore, ∫ u+
?

u−?

f(u) du = −c
∫ ∞
−∞

(u′)2 dη, (902)

and because u′ is not identically zero (as u−? 6= u+
? ), the integral on the right hand side is nonzero

and, thus, positive as the integrand is nonnegative. Whence

c = −

∫ u+
?

u−?
f(u) du∫∞

−∞(u′)2 dη
=⇒ sgn(c) = sgn

(
−
∫ u+

?

u−?

f(u) du

)
= −sgn

(∫ u+
?

u−?

f(u) du

)
. (903)

This shows the sign of c is opposite that of the integral in (895), as desired.

c) First note our hypothesis implies

u′′ = B
[
u′(u− u2) + (u− u0)u′

]
= Bu′ [2u− u0 − u2] = B2(u− u0)(u− u2)(2u− u0 − u2). (904)
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Then (896) implies

0 = u′′ + cu′ + f(u)

= B2(u− u0)(u− u2)(2u− u0 − u2) + cB(u− u0)(u− u2)− (u− u0)(u− u1)(u− u2)

= (u− u0)(u− u2)
[
B2(2u− u0 − u2) + cB − (u− u1)

]
.

(905)

Because this holds for each u, this implies

0 = B2(2u−u0−u2)+cB− (u−u1) =⇒ (1−2B2)u = cB−B2(u0 +u2)+u1 =⇒ B = ± 1√
2
, (906)

where the final implication holds through equating powers of u. Because u′ goes to zero in the limits

as η −→ ±∞, we know u ∈ [u0, u2]; otherwise, |u′| would be increasing as η −→ ±∞. Since u ∈ (u0, u2)

and u is monotone increasing, the formula for u′ reveals B < 0, and so B = −1/
√

2. Then

0 = − c√
2

+
u0 + u2

2
+ u1 =⇒ c =

√
2

[
u0 + u2

2
+ u1

]
. (907)

All that remains is to solve for u in terms of η, c, and B. Observe

Bdη =
du

(u− u0)(u− u2)
. (908)

Using partial fraction expansions, we know there exists α1, α2 ∈ R such that

1

(u− u0)(u− u2)
=

α1

u− u0
+

α2

u− u2
=⇒ 1 = α1(u− u2) + α2(u− u0). (909)

Plugging in u = u2 and u = u0 reveals

α1 =
1

u0 − u2
and α2 =

1

u2 − u0
. (910)

Thus, ∫
du

(u− u0)(u− u2)
=

1

u2 − u0

∫ [
1

u− u2
− 1

u− u0

]
du

=
1

u2 − u0
[ln(|u− u2|)− ln(|u− u0|)]

=
1

u2 − u0
ln

(
u2 − u
u− u0

)
,

(911)
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and, integrating the left hand side of (908), there exists α3 ∈ R such that

ln

(
u2 − u
u− u0

)
= (u2 − u0) [Bη + α3] =⇒ u2 − u

u− u0
= exp ((u2 − u0) [Bη + α3])︸ ︷︷ ︸

=:ϕ(η)

= ϕ(η), (912)

which implies

u2 − u = (u− u0)ϕ =⇒ u =
u2 + u0ϕ

ϕ+ 1
. (913)

This completes the proof.

�
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S16.7. Consider the system of PDEs:35


ρt + ρxu+ ρux = 0 in R× (0,∞),

ρ(ut + uxu) = k∂x[ρ0/ρ] in R× (0,∞),

(914)

for u(x, t) and ρ(x, t), where ρ0(x) := ρ(x, 0) and k > 0. Also consider φ : R × (0,∞) → R defined

by 
φt(X, t) := u(φ(X, t), t) in R× (0,∞),

φ(X, t) = X on R× {t = 0},
(915)

where u and ρ are solutions of the above.

a) Define R(X, t) := ρ(φ(X, t), t) and J(X, t) = φX(X, t). Show that R(X, t)J(X, t) = R(X, 0).

b) Show that R(X, 0)φtt(X, t) = kφXX(X, t) in R× (0,∞).

c) Use the results of a) and b) to solve the system with initial conditions u(x, 0) = c sin(x) and ρ(x, 0) =

1, where |c| <
√
k. You can express you answer in terms of the inverse (f−1) of the function

f(X) := X + c sin(X), which exists provided |c| < 1.

Solution:

a) Observe

J(X, 0) = φX(X, 0) = ∂X [X] = 1 =⇒ R(X, 0)J(X, 0) = R(X, 0). (916)

This verifies the equality at time t = 0. Differentiating in time, we see

∂t [RJ ] = ṘJ +RJ̇= [ρXφt + ρt] J +R [φXt] = [ρXu+ ρt]φX + ρ [uxφX ]= φX [ρXu+ ρt + ρux] = 0.

(917)

This shows RJ is constant in time, from which the result follows.

b) Observe

ρ0(X) = R(X, 0) = R(X, t) = J(X, t) = ρ(X, t)φX(X, t) (918)

35Although I applaud Teran’s amazing abilities as a mathematician, his notation can be quite hard to follow. Here we
diverge slightly from the prompt, but don’t make it too ‘easy’ to read so that it might mirror the notation of a future exam...
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and

φtt = uxφt + ut = uxu+ ut =
k

ρ
∂x

[
ρ0

ρ

]
. (919)

Thus,

ρ0φtt =
kρ0

ρ
∂x

[
ρ0

ρ

]
= kφx∂x[φx] = kφxφxx. (920)

(There is an error here.)

c)

�
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S16.8. Consider the parabolic PDE


ut −∆u+ |ux1 | = 0 in Rn × (0,∞),

u = g on Rn × {t = 0},
(921)

where g is a continuous function with compact support. Show that there is at most one solution of

the above problem that tends to zero as |x| −→ ∞.

Solution:

Let u and v be two solutions to the given PDE that tend to zero as |x| −→ ∞. Set w := u − v. It

suffices to show w = 0 in Rn × (0,∞). Fix ε > 0 and T > 0. Since u and v are continuous in time

and lim|x|→∞ |u(x, t)| = lim|x|→∞ |v(x, t)| = 0 for each t ∈ (0,∞), there exists a continuous function

ξ : [0,∞)→ R such that

|x| ≥ ξ(t) =⇒ =⇒ |u(x, t)|, |v(x, t)| ≤ ε/2. (922)

Set R := max[0,T ] ξ, which is well-defined due to the compactness of [0, T ] and continuity of ξ. Then

|x| ≥ R =⇒ |u(x, t)|, |v(x, t)| ≤ ε/2, for all t ∈ [0, T ], (923)

and so application of the triangle inequality yields

|w(x, t)| ≤ |u(x, t)|+ |v(x, t)| ≤ ε, for all |x| ≥ R and t ∈ [0, T ]. (924)

This implies

sup
(Rn−B(0,R))×[0,T ]

|w| ≤ ε =⇒ sup
Rn×[0,T ]

w = max
{

sup
UT

w, ε
}
. (925)

We claim

sup
UT

w = sup
ΓT

w ≤ ε, (926)

where the inequality holds by (924) and the fact w = g − g = 0 on B(0, R)× {t = 0}, and so

ε ≥ sup
Rn×[0,T ]

w = sup
Rn×[0,T ]

u− v − εt ≥ sup
Rn×[0,T ]

u− v. (927)
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Now letting ε −→ 0+, we see

sup
Rn×[0,T ]

u− v = lim
ε→0+

(
sup

Rn×[0,T ]
u− v

)
≤ lim

ε→0+
ε = 0. (928)

This shows

sup
Rn×[0,T ]

u− v ≤ 0. (929)

Since this holds for arbitrary T > 0, we may let T −→∞ to deduce

sup
Rn×(0,∞)

u− v ≤ 0. (930)

Through likewise argument with u and v in the definition of w, we find

sup
Rn×(0,∞)

v − u ≤ 0 =⇒ sup
Rn×(0,∞)

u− v ≥ 0. (931)

Therefore u = v in Rn × (0,∞).

All that remains is to verify the equality in (926). Observe


wt −∆w = |vx1 | − |ux1 | − ε in Rn × (0,∞),

w = 0 on Rn × {t = 0}.
(932)

By way of contradiction, suppose w attains its max over UT in its parabolic interior at a point (x, t) ∈ UT .

Then wt(x, t) ≥ 0 and, since x is a local maximizer of w(·, t), we know ∆w(x, t) ≤ 0. Furthermore,

0 = Dw = Du−Dv =⇒ Du = Dv =⇒ ux1 = vx1 . (933)

Thus, at (x, t), we obtain the inequality

0 ≤ wt −∆w = |vxi | − |uxi | − ε = −ε < 0, (934)

a contradiction. Whence the equality in (926) must hold. �
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2015 Fall

F15.1. Consider the autonomous differential equation system

ẋ = −x+ y2, ẏ = y − x2. (935)

a) Identify the fixed points of this equation and show (either by linearizing the equation or some other

method) whether they are stable or unstable.

b) Sketch the trajectories for this differential equation in the (x, y) phase plane. You sketch should

include the eigenvectors of the fixed points identified in a) if they correspond to features that can

be seen in the phase plane. It should also include the asymptotic behavior of trajectories for large x

and/or y.

Solution:

a) First note ẋ = 0 if either x = y = 0 or x > 0 and y 6= 0. Similarly, ẏ = 0 if y = x = 0 or y > 0 and

x 6= 0. Thus the two fixed points of this system are (0, 0) and (1, 1). The Jacobian matrix J(x, y) for

this system is

J(x, y) :=

 ∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y

 =

 −1 2y

−2x 1

 . (936)

This implies

J(0, 0) =

 −1 0

0 1

 , (937)

which has eigenvalues λ = ±1. Therefore (0, 0) is a saddle point, which is unstable. Now observe

∂ẋ

∂x
+
∂ẏ

∂y
= −1 + 1 = 0, (938)

which implies the system is Hamiltonian, i.e., there exists H(x, y) such that Hy = ẋ and Hx = −ẏ.

Integrating reveals

H(x, y) =

∫
ẋ dy =

y3

3
− xy + f(y) and H(x, y) = −

∫
ẏ dx =

x3

3
− xy + h(x), (939)
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for some functions f(y) and h(x). Combining these results, we deduce

H(x, y) =
x3 + y3

3
− xy +

1

3
. (940)

Observe H(1, 1) = (1 + 1)/3− 1 + 1/3 = 0 and

∇H(x, y) =

 x2 − y

y2 − x

 =⇒ ∇2H(x, y) =

 2x −1

−1 2y

 =⇒ ∇2H(1, 1) =

 2 −1

−1 2

 , (941)

where ∇2H is the Hessian matrix. The eigenvalues of ∇2H(1, 1) satisfy

0 = (λ− 2)2 − 1 = λ2 − 4λ+ 3 =⇒ λ =
4±
√

42 − 4 · 1 · 3
2

= 1, 3. (942)

This shows ∇2H(1, 1) is positive definite, and so H(x, y) > H(1, 1) = 0 in a neighborhood of (1, 1)

(excluding (1, 1)). Moreover,

Ḣ(x, y) = x2ẋ+y2ẏ− ẋy−xẏ = ẋ(x2−y)+ ẏ(y2−x) = (y2−x)(x2−y)− (x2−y)(y2−x) = 0. (943)

We have thus shown H(1, 1) = 0, H(x, y) > 0 in a neighborhood of (1, 1), and Ḣ(x, y) ≤ 0. Therefore

Lyapunov’s theorem tells us (1, 1) is stable.

b) The desired figure is below.

Figure 24: Phase Plane for F15.1.
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Lastly, we analyze the behavior for large x and y, which reveals

dy

dx
=
ẏ

ẋ
=

y − x2

−x+ y2
∼ −x

2

y2
=⇒ y2 dy ∼ −x2 dx, (944)

which implies there exists C ∈ R such that large trajectories approximately are of the form

x3 + y3 = C. (945)

Alternatively, this behavior could be deduced directly from the Hamiltonian in (940) by considering

level curves of H for large x and y.

�
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F15.2. The LWR models the density of cars ρ(x, t) on an infinite 1D road with flow in one direction via

the PDE

∂tρ+ ∂x (ρ(1− ρ)) = 0 in R× [0,∞), (946)

where F = ρ(1 − ρ) denotes the flux of cars past a point in the road. The formula for F comes from the

assumption that u(x, t) := 1− ρ is the mean speed of cars on the road.

a) Under the assumption that (946) admits a unique solution, show that any state with uniform traffic

ρ(x, 0) = ρ0 is stable, taking ρ0 ∈ (0, 1). Specifically, show that if ρ(x, t) is a solution of (946), then

‖ρ(·, t)− ρ0‖L∞(R) ≤ ‖ρ(·, 0)− ρ0‖L∞(R).

b) Show that any step discontinuous function of the form

ρ(x, t) :=


ρ` if x < vt,

ρr if x > vt,

(947)

where ρ`, ρr ∈ (0, 1) are both constants, satisfies the weak form of (946) (which you should derive)

so long as the velocity of the discontinuity v satisfies a condition, which you should also derive.

c) The weak solutions of this PDE are not unique. To impose uniqueness, it is often assumed that car

accelerations must be bounded. Namely, if x = x(t) is the trajectory of a car on this road, then

ẋ(t) = u(x(t), t) (948)

and

ẍ(t) <∞. (949)

Note cars can decelerate infinitely quickly so that ẍ can be arbitrarily large and negative. Show that

under this assumption, solutions of the form in b) are allowed only if ρ` < ρr.

Solution:

a) We proceed using the method of characteristics, assuming ρ is a solution with uniform initial data ρ0.

Set F (p, q, z, x, t) = q + p(1− 2z). Taking p = ρx, q = ρt, and z = ρ, we deduce F = 0 in R× [0,∞)
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and obtain the ODE system
ẋ(s) = Fp = 1− 2z, x(0) = x0,

ṫ(s) = Fq = 1 t(0) = 0,

ż(s) = Fqq + Fpp = 1q + (1− 2z) = 0, z(0) = rho0.

(950)

This implies t = s and ρ is constant along characteristics. Moreover, this implies

x = (1− 2ρ0)t+ x0, (951)

i.e., the characteristics are parallel lines. Hence for (x, t) ∈ R × (0,∞) we deduce ρ(x, t) = ρ0, and

thus

‖ρ(·, t)− ρ0‖L∞(R) = ‖ρ0 − ρ0‖L∞(R) = ‖ρ(·, 0)− ρ0‖L∞(R). (952)

b) Since this PDE is a conservation law, the velocity v of the discontinuity must satisfy the Rankine-

Hugenoit condition

v =
f(ρ`)− f(ρr)

ρ` − ρr
, (953)

where we take f(ρ) := ρ(1− ρ). We derive this as follows. First assume u is a smooth solution of the

given PDE and let v be a test function, i.e., v : R × [0,∞) → R is smooth with compact support.

Integration by parts reveals

0 =

∫ ∞
0

∫ ∞
−∞

v (ut + f(u)x) dxdt = −
∫ ∞

0

∫ ∞
−∞

uvt + f(u)vx dxdx−
∫ ∞
−∞

uv|t=0 dx, (954)

where the nonlisted boundary terms are zero since v has compact support. Observe the right hand

side makes sense even if u is only bounded. Consequently, we say u ∈ L∞(R × (0,∞)) is a weak

solution of the PDE (946) provided for all test functions v

0 = −
∫ ∞

0

∫ ∞
−∞

uvt + f(u)vx dxdx−
∫ ∞
−∞

uv|t=0 dx. (955)

Now suppose ρ is as given in (947). Set C to be the curve of the discontinuity so that (x, t) = (vt, t)

along C, and set V` := {(x, t) ∈ R× (0,∞) : x < vt} and set Vr := {(x, t) ∈ R× (0,∞) : x < vt}. For
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each test function v with compact support in V` we see

∫∫
V`

ρvt + f(ρ)vx dxdt = −
∫∫

V`

[ρt + f(ρ)x] v dxdt = −
∫∫

V`

[0 + 0] v dxdt = 0. (956)

Similarly, for all test functions with compact support in Vr∫∫
Vr

ρvt + f(ρ)vx dxdt = 0. (957)

For any test function v with compact support (not necessarily vanishing along the discontinuity), we

see ∫ ∞
0

∫ ∞
−∞

ρvt + f(ρ)vx dxdt =

∫∫
V`

ρvt + f(ρ)vx dxdt+

∫∫
Vr

ρvt + f(ρ)vx dxdt

=

∫
∂V`

(
ρ`ν

2 + f(ρ`)ν
1
)
v ds−

∫
∂V`

(
ρrν

2 + f(ρr)ν
1
)
v ds

=

∫
∂V`

(
(ρ` − ρr)ν2 + [f(ρ`)− f(ρr)] ν

1
)
v ds,

(958)

where ν = (ν1, ν2) is the outward normal along ∂V`, making −ν the outward normal along ∂Vr,

and the integrals over the interior of V` and Vr vanish by (956) and (957). Note (958) shows ρ is

a weak solution of the PDE precisely the expression on the right hand side is zero. Since v was an

arbitrary test function, this occurs precisely when

0 = (ρ` − ρr)ν2 + [f(ρ`)− f(ρr)] ν
1 along C. (959)

Along the discontinuity C we have (x, t) = (vt, t), and so ν = 1√
(vt)2+t2

(−t, vt). Substituting in for ν

and dividing by t yields

v =
f(ρ`)− f(ρr)

ρ` − ρr
, (960)

as claimed above. Consequently, we conclude ρ is a weak solution of the PDE provided (960) holds.

c) Suppose ρ is a solution of the form in b). Then

ẋ(t) = u(x(t), t) =


1− ρ` if x < vt,

1− ρr if x > vt.

(961)
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Consider any car trajectory for which there is a time t∗ ∈ (0,∞) at which the trajectory crosses the

discontinuity, i.e., (x(t∗), t∗) ∈ C. Then

ẍ(t∗) = lim
ε→0+

ẋ(t∗ + ε)− ẋ(t∗ − ε)
2ε

= lim
ε→0+

ρ` − ρr
2ε

=


+∞ if ρ` − ρr > 0,

−∞ if ρ` − ρr < 0,

(962)

where the final equality holds since ρ` 6= ρr. By our assumption in (949), we conclude ρ` − ρr < 0.

�
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F15.3. Consider the porous medium equation with drift

ρt −∆(ρ3)−∇ · (2xρ) = 0 in R2 × [0, t], (963)

where the initial data ρ0(x) ≥ 0 is compactly supported and
∫
ρ0dx = 1. Let us assume that ρ(·, t) stays

nonnegative and compactly supported for all times t > 0. Using formal calculations, show the following.

a)
∫
ρ(·, t) dx = 1 for all t > 0.

b) Show that the energy

E(t) :=

∫∫
R2

1

2
ρ3 + ρ|x|2 + Cρ dx (964)

decreases for all times t > 0, for any constant C.

c) Using a) and b), show that ρ converges as t→∞ to the stationary profile

(
max(0, A−B|x|2/2)

)1/2
, (965)

for appropriate A and B.

Solution:

a) We point out the notation in the prompt is likely incorrect, and we instead assume

ρt −∆(ρ3)−∇ · (2xρ) = 0 in R2 × [0,∞). (966)

Now define the energy e : [0,∞)→ R via

e(t) :=

∫∫
R2

ρ(x, t) dx. (967)

Then, by hypothesis, e(0) = 1. For t ∈ (0,∞) we see

ė(t) =
d

dt

∫∫
R2

ρ dx =

∫∫
R2

ρt dx =

∫∫
R2

∆(ρ3) +∇ · (2xρ) dx =

∫∫
R2

∇ ·
[
3ρ2Dρ+ 2xρ

]
dx. (968)
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Since ρ is compactly support at time t, there is Rt > 0 such that spt(ρ(·, t)) ⊆ Rt. Consequently,

ė(t) =

∫∫
R2

∇ ·
[
3ρ2Dρ− 2xρ

]
dx

=

∫∫
B(0,2Rt)

∇ ·
[
3ρ2Dρ− 2xρ

]
dx

=

∫
∂B(0,2Rt)

[
3ρ2Dρ− 2xρ

]
· ν dσ

=

∫
∂B(0,2Rt)

0 dσ

= 0,

(969)

where the third equality holds by Gauss’s law (a.k.a. the “divergence theorem”) and ν denotes

the outward normal along ∂B(0, 2Rt). This shows ė(t) = 0 for all t ∈ (0,∞), from which we conclude

e(t) = 1 for all t ∈ (0,∞).

b) Differentiating yields

Ė(t) =

∫∫
R2

∂t

(
1

2
ρ3 + ρ|x|2

)
dx+ Cė(t)

=

∫∫
R2

ρt

[
3

2
ρ2 + |x|2

]
dx

=

∫∫
R2

[
∇ ·
(
3ρ2Dρ+ 2xρ

)] [3

2
ρ2 + |x|2

]
dx

= −
∫∫
R2

(
3ρ2Dρ+ 2xρ

)
· [3ρDρ+ 2x] dx

= −
∫∫
R2

ρ |3ρDρ+ 2x|2 dx

≤ 0.

(970)

The first equality holds by linearity of the integral and definition of e(t). The second holds by

differentiating and noting ė(t) = 0. The third holds by using the PDE to substitute for ρt. The fourth

holds by integration by parts, where the boundary terms cancel since ρ has compact support. The

final inequality holds since ρ ≥ 0 and |3ρDρ + 2x|2 ≥ 0, making the integrand nonnegative. This

shows Ė(t) ≤ 0 for all t ∈ (0,∞), from which we conclude E(t) is monotonically decreasing.

c) Note the terms ρ3/2 and ρ|x|2 in the integrand of E(t) are nonnegative. And, using a), we see E(t)
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is bounded below by C. Since we showed in b) that E(t) is monotonically decreasing, it follows from

the monotone convergence theorem that limt→∞E(t) exists. Together with the fact Ė ≤ 0, we see

0 = lim
t→∞

Ė(t) = −
∫∫
R2

ρ |3ρDρ+ 2x|2 dx. (971)

Let ρ∞ be the function to which ρ converges. We know ρ∞ is nonnegative since ρ(·, t) is nonnegative

for all t ∈ (0,∞).36. Wherever ρ∞ 6= 0 in R2, we obtain

0 = |3ρ∞Dρ∞ + 2x|2 =⇒ 0 = 3ρ∞Dρ∞ + 2x =⇒ 0 = ∇
(
3ρ2
∞ + |x|2 + c

)
, (972)

for some constant A. Thus, where ρ∞ 6= 0,

ρ2
∞ = −|x|

2

3
− c

3
=⇒ ρ∞ =

(
− c

3
− |x|

2

3

)1/2

. (973)

Combining our results, we conclude

ρ∞ =

(
max

(
0,− c

3
− |x|

2

3

))1/2

. (974)

From the problem statement, we conclude A = c/3 and B = 2/3, and c is chosen so that
∫∫
R2 ρ∞ dx =

1 since ė(t) = 0 for all t ∈ (0,∞).

�

36This can proven by way of contradiction using elementary analysis.
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F15.5. Let U := {|x| ≤ 1} ⊂ Rn. For a given T > 0, consider a smooth solution to the PDE

ut −∆u = u(u− 1) in UT = U × (0, T ], (975)

with boundary data 0 ≤ u < 1 on the parabolic boundary of UT , i.e., on U × {t = 0} and ∂U × (0, T ].

With these assumptions, prove that 0 ≤ u < 1 in the entire domain UT . You should show the proof of any

maximum principle you use.

Solution:

Let ΓT be the parabolic boundary of UT . Since ΓT is closed and u is smooth, u attains its supremum

over ΓT . Let µ := maxΓT
u. Then our hypothesis implies 0 ≤ µ < 1. Now let ε ∈ (0, 1 − µ) and define

w(x, t) := u(x, t) + ε|x|2. Then w < 1 on ΓT since

max
ΓT

w = max
ΓT

u+ ε|x|2 ≤ max
ΓT

u+ ε = µ+ ε < µ+ (1− µ) = 1. (976)

We now use a “first time” argument. By way of contradiction, suppose w = 1 somewhere in UT . Let

(x∗, t∗) ∈ UT be such a point that w(x∗, t∗) = 1 and t∗ is the first time at which this occurs. Then

wt(x
∗, t∗) ≥ 0 and ∆w(x∗, t∗) ≤ 0 because x∗ is a local maximizer of the function w(·, t∗). Using our PDE

for u, this implies

0 ≤ wt −∆w = u(u− 1)− 2nε = (w − ε|x|2)
(
w − ε|x|2 − 1

)
− 2nε = −ε|x|2(1− ε|x|2)− 2nε < 0, (977)

a contradiction. Note 1−ε|x|2 > 0 since ε < 1 and |x|2 ≤ 1 in U , and note ∆|x|2 = 2nε. This contradiction

reveals w < 1 in UT . Consequently, u < u+ ε = w < 1 in UT .

Now we show u ≥ 0 in UT using another “first time” argument. Let δ > 0 and suppose there is (x′, t′) ∈ UT

such that u(x′, t′) = −δ with t′ the first time at which this occurs. Then ut(x
′, t′) ≤ 0 and ∆u(x′, t′) ≥ 0

since x′ is a local minimizer of u(·, t′). This implies

0 ≥ ut −∆u = u(u− 1) = −δ(−δ − 1) = δ(1 + δ) > 0, (978)

a contradiction. This proves u > −δ in UT . Since δ > 0 was arbitrarily chosen, we may let δ −→ 0+ to

deduce u ≥ 0 in UT , and the proof is complete. �
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F15.6. Let g : Rn → R be Lipschitz, and let u be the unique weak solution of the Hamilton-Jacobi

equation 
ut + |Du|2 = 0 in Rn × (0,∞),

u = g on Rn × {t = 0}.
(979)

a) Show there exists C > 0 such that for all t > 0, |u(x, t)− g(x)| ≤ Ct.

b) Suppose |g(x)| ≤M |x|−1 with M a constant. Show that u(x, t) converges to zero as t −→∞.

Solution:

a) The Hamiltonian for the given PDE is H(p) = |p|2. Substituting this into our PDE yields that u is a

weak solution to 
ut +H(Du) = 0 in Rn × (0,∞),

u = g on Rn × {t = 0}.
(980)

The associated Lagrangian is given by the Fenchel dual, i.e.,

L(v) = sup
p∈Rn

p · v −H(p) = sup
p∈Rn

p · v − |p|2. (981)

Since the expression to be maximized is quadratic and concave down, the maximizer is the unique

critical point of the expression. Thus differentiating yields

0 = Dp

[
p · v − |p|2

]
= v − 2p =⇒ p =

v

2
, (982)

and so

L(v) =
(v

2

)
· v −

∣∣∣v
2

∣∣∣2 =
|v|2

4
. (983)

The Hopf-Lax formula tells us

u(x, t) = min
y∈Rn

(
t · L

(
x− y
t

)
+ g(y)

)
in Rn × (0,∞). (984)

To obtain our desired inequality, we use this formula and the fact g is Lipschitz. For all x, y ∈ Rn

|g(y)− g(x) ≤ Lip(g)|y − x| =⇒ g(y) ≥ g(x)− Lip(g)|y − x|. (985)
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This implies

u(x, t) ≥ min
y∈Rn

(
t · L

(
x− y
t

)
+ g(x)− Lip(g)|y − x|

)
= g(x)− t · max

y∈Rn

(
Lip(g) · |x− y|

t
− L

(
x− y
t

))
.

(986)

Letting ξ = (x− y)/t, we see

max
y∈Rn

(
Lip(g) · |x− y|

t
− L

(
x− y
t

))
= max

ξ∈Rn

(
Lip(g)|ξ| − |ξ|

2

4

)
= max

α∈R
Lip(g)α− α2

4
. (987)

The critical point α satisfies

0 = Lip(g)− α

2
=⇒ α = 2Lip(g). (988)

Plugging this value for α back in yields

u(x, t) ≥ g(x)− t · Lip(g) =⇒ u(x, t)− g(x) ≥ −t · Lip(g). (989)

Now observe

u(x, t) = min
y∈Rn

(
t · L

(
x− y
t

)
+ g(y)

)
≤ t · L(0) + g(x) = g(x), (990)

where we take y = x to obtain the inequality. This shows, for all x, y ∈ Rn,

u(x, t)− g(x) ≤ 0 ≤ Lip(g) · t. (991)

Combining our results, we conclude

‖u(·, t)− g‖L∞(Rn) ≤ Lip(g) · t. (992)
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b) Using our inequality with the Hopf-Lax formula reveals, for all (x, t) ∈ Rn × (0,∞),

|u(x, t)| =
∣∣∣∣min
y∈Rn

(
t · L

(
x− y
t

)
+ g(y)

)∣∣∣∣
≤ min

y∈Rn

(
t ·
∣∣∣∣L(x− yt

)∣∣∣∣+ |g(y)|
)

≤ min
y∈Rn

|x− y|2

4t
+
M

|y|

≤ min
y∈Rn

|x|2 + 2|x||y|+ |y|2

4t
+
M

|y|

= min
α∈R

|x|2 + 2|x|α+ α2

4t
+
M

α

≤ |x|
2

4t
+

2|x|(2M)1/3

t2/3
+

(2M)2/3

t1/3
+

M

(2Mt)1/3
,

(993)

where we substitute α = |y| for notational convenience and take α = (2Mt)1/3 in the final line.

Noting the powers of t in the denominator of each term on the right hand side, we obtain

lim
t→∞
|u(x, t)| ≤ lim

t→∞

|x|2

4t
+

2|x|(2M)1/3

t2/3
+

(2M)2/3

t1/3
+

M

(2Mt)1/3
= 0. (994)

Whence u −→ 0 point-wise as t −→∞.

�
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F15.7. Consider the set K of functions u : [0, 2]→ R of the form

u(x) =


v(x), if x ∈ [0, 1),

w(x), if x ∈ (1, 2],

(995)

with v ∈ C2[0, 1) and w ∈ C2(1, 2], and with the property that v(0) = w(2) = 0 and w(1)− v(1) = a, for

a given constant a. Define the energy37

E(u) :=
1

2

∫ 1

0
(ux)2 dx+

1

2

∫ 2

1
(ux)2 dx+ ub, (996)

where u := 1
2(w(1) + v(1)), and b is a given constant. Show that there exists h(x) that minimizes E over

K, and solve for h.

Solution:

Our admissibility class K is defined in the prompt. Of course, f(x) := x2 is convex since f ′′(x) = 2 ≥ 0.

We claim E is convex. Indeed, if û, ũ ∈ K and if λ ∈ (0, 1), then

E (λû+ (1− λũ)) =
1

2

∫ 1

0

f (λv̂ + (1− λṽ)) dx+
1

2

∫ 2

1

f (λû+ (1− λw̃)) dx+ λû+ (1− λũ)b

≤ 1

2

∫ 1

0

λf(v̂) + (1− λ)f(ṽ) dx+
1

2

∫ 2

1

λf(ŵ) + (1− λ)f(w̃) dx+ λûb+ (1− λ)ũb

= λE(û) + (1− λ)E(ũ),

(997)

where we have used the convexity of f , the linearity of integration, and the fact λû+ (1− λũ) = λû +

(1 − λ)ũ. This shows any extremal of E over K is a minimizer. Therefore, it suffices to identify an

extremal of E over K since such an extremal is necessarily a minimizer. Let u ∈ K, ε ∈ (0,∞), and

z ∈ S := {φ ∈ C2[0, 2] : φ(0) = φ(2) = 0}. Then u+ εz ∈ K since

(v + εz) ∈ C2[0, 1), (w + εz) ∈ C2(1, 2], (v + εz)(0) = 0, (w + εz)(2) = 0. (998)

37I’m not sure if there was a typo or not, but I added a 1/2 factor in front of the second integral. If this wasn’t a typo, then
the same procedure can be used, but a slightly different minimizer will be obtained.
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Now observe

E(u+ εz) =
1

2

∫ 1

0
(v′ + εz′)2 dx+

1

2

∫ 2

1
(w′ + εz′)2 dx+ b (u+ εz(1)) . (999)

Consequently,

E(u+ εz)− E(u)

ε
=

1

ε

[
1

2

∫ 1

0
2εv′z′ + ε2(z′)2 dx+

1

2

∫ 2

1
2εw′z′ + ε2z′2 dx+ εbz(1)

]
=

∫ 1

0
v′z′ + ε(z′)2 dx+

∫ 2

1
w′z′ + ε(z′)2 dx+ bz(1)

=

∫ 1

0
−v′′z + ε(z′)2 dx+

∫ 2

1
−w′′z + ε(z′)2 dx+

[
v′z
]1
0

+
[
w′z
]2
1

+ bz(1)

= ε

∫ 2

0
(z′)2 dx+

∫ 1

0
−v′′z dx+

∫ 2

1
−w′′z dx+ z(1)

[
v′(1)− w′(1) + b

]
,

(1000)

where the third equality holds via integration by parts and the final line holds since z(0) = z(2) = 0.

Letting ε −→ 0+, we see the Gâteaux derivative is given by

δE(u, z) = lim
ε→0+

E(u+ εz)− E(u)

ε

= lim
ε→0+

ε

∫ 2

0
(z′)2 dx+

∫ 1

0
−v′′z dx+

∫ 2

1
−w′′z dx+ z(1)

[
v′(1)− w′(1) + b

]
=

∫ 1

0
−v′′z dx+

∫ 2

1
−w′′z dx+ z(1)

[
v′(1)− w′(1) + b

]
.

(1001)

We shall use this expression for δE(u, z) and the fact every extremizer of E over K satisfies δE(u, z) = 0

for all z ∈ S.

Suppose there exists an extremizer u of E over K. Then (1001) implies, by the arbitrariness of z,

v′′ = 0 in (0, 1), w′′ = 0 in (1, 2), w′(1) = v′(1) + b. (1002)

Consequently,

u(x) =


c1x+ c2 if x ∈ [0, 1),

d1x+ d2 if x ∈ (1, 2].

(1003)
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Then (1001) also implies d1 = c1 + b and the condition u(2) = 0 implies d2 = −2(c1 + b). The condition

u(0) = 0 implies c2 = 0. Thus

u(x) =


c1x if x ∈ [0, 1),

(c1 + b)(x− 2) if x ∈ (1, 2].

(1004)

Then

a = w(1)− v(1) = (c1 + b)(1− 2)− c1 · 1 = −2c1 − b =⇒ c1 = −a+ b

2
. (1005)

Whence

u(x) =


−a+ b

2
x if x ∈ [0, 1),

b− a
2

(x− 2) if x ∈ (1, 2].

(1006)

Note u defined by (1006) satisfies u ∈ K. And, since δE(u, z) = 0 for u defined by (1001) and all z ∈ S,

we deduce u is an extremizer of E over K. Because E is convex, it follows that u is a minmizer of E over

K. Thus we have established the existence of a minimizer u of E over K and given an explicit expression

for u, and we are done. �
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F15.8. Let u(x, t) be the entropy solution of the Burgers’ equation

ut + f(u)x = 0 in R× (0,∞), (1007)

with f(u) = u2/2 and initial data

u(x, 0) =


(x+ 1)2 if x ∈ [−1, 0],

(x− 1)2 if x ∈ [0, 1],

0 otherwise.

(1008)

Find the time T > 0 when u becomes discontinuous for the first time.

Solution:

We proceed by using the method of characteristics. Set F (p, q, z, x, t) := q + zp. Then taking q = ut,

p = ux, and z = u yields F = 0 and gives rise to the ODE system



ṗ(s) = −Fx − Fzp = 0− p2, p(0) = g′(x0),

q̇(s) = −Ft − Fzq = 0− pq, q(0) = q0,

ẋ(s) = Fp = z, x(0) = x0,

ṫ(s) = Fq = 1, t(0) = 0,

ż(s) = Fpp+ Fqq = zp+ q = 0, z(0) = g(x0),

(1009)

where we set g(x) := u(x, 0). This implies s = t and z is constant along characteristics. Additionally, using

separation of variables reveals

dp

dt
= −p2 =⇒ −p−2 dp = dt =⇒ p−1 = t+ C =⇒ p =

1

t+ C
, (1010)

for some scalar C ∈ R. Using the initial condition yields

g′(x0) = p(0) =
1

0 + C
=⇒ C =

1

g′(x0)
=⇒ p =

g′(x0)

tg′(x0) + 1
. (1011)

Note g′(x0) = 0 for x /∈ (−1, 1). If x0 ∈ (−1, 0), then g′(x0) = 2(x0 + 1) > 0. So, p will not blow up for
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characteristics originating outside of (0, 1). However, if x0 ∈ (0, 1), then

g′(x0) = 2(x0 − 1) < 0 =⇒ lim
t→φ(x0)−

p(t) = lim
t→φ(x0)−

−2(1− x0)

−2t(1− x0) + 1
= −∞, (1012)

where φ(x0) := 1/2(1 − x0). Since p = ux, this implies u becomes discontinuous at time φ(x0). We are

interested in the smallest time T > 0 such that u becomes discontinuous. Since

φ′(x0) =
(1− x0)−2

2
> 0, (1013)

we see φ is increasing. Therefore, letting x0 −→ 0+, we see φ(x0) −→ 1
2 , and so the smallest time at which

u becomes discontinuous is T = 1
2 . �
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2015 Spring

S15.1. Consider the damped conservation law


ut + f(u)x = −u in R× [0,∞),

u = u0 on R× {t = 0},
(1014)

where u0(x) has compact support. Define the notion of integral solution and derive the jump (Rankine-

Hugonoit) condition for a discontinuity (u−, u+) in an integral solution.

Solution:

Let u be a smooth solution to the given PDE and assume

v : R× (0,∞)→ R is smooth with compact support. (1015)

Then multiplying the PDE by v and integrating by parts yields

0 =

∫
R

∫ ∞
0

(ut + ∂xf(u) + u)v dxdt

=

∫
R

∫ ∞
0
−uvt − f(u)vx + uv dxdt+

∫
R

[uv]∞t=0 dx+
���

���
���:

0∫ ∞
0

[uv]∞x=−∞ dt

=

∫
R

∫ ∞
0
−uvt − f(u)vx + uv dxdt−

∫
R

u0v
∣∣
t=0

dx.

(1016)

This implies

0 =

∫
R

∫ ∞
0
−uvt − f(u)vx + uv dxdt−

∫
R

u0v
∣∣
t=0

dx, (1017)

which has meaning even if u is only bounded. Whence we say u ∈ L∞(R× (0,∞)) is an integral solution

of the PDE provided (1017) holds for each test function v satisfying (1015).

To derive the Rankine-Hugonoit condition, let V ⊂ R× (0,∞) be open and assume u is smooth on either

side of the curve C of the discontinuity. Let V` and Vr be the portions of V to the left and right of C,

respectively. We assume u is an integral solution of the PDE and has uniformly continuous first derivatives
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in V` and in Vr. For any test function v with compact support in V` we see

0 =

∫
R

∫ ∞
0
−uvt − f(u)vx + uv dxdt = −

∫
R

∫ ∞
0

(ut + ∂xf(u) + u)v dxdt, (1018)

where the integration by parts is justified since u is C1 in V` and v vanishes near the boundary of V`. Since

this result holds for all v with compact support in V`, we deduce

ut + ∂xf(u) + u = 0 in V`. (1019)

Likewise,

ut + ∂xf(u) + u = 0 in Vr. (1020)

Now consider v with compact support in V , but which does not necessarily vanish along the curve C.

Using (1017), we discover

0 =

∫
R

∫ ∞
0
−uvt − f(u)vx + uv dxdt

=

∫∫
V`

∫ ∞
0
−uvt − f(u)vx + uv dxdt+

∫∫
Vr

∫ ∞
0
−uvt − f(u)vx + uv dxdt.

(1021)

Since v has compact support in V ,

∫∫
V`

∫ ∞
0
−uvt − f(u)vx + uv dxdt =

���
���

���
���

���
�:0

−
∫∫

V`

[ut + ∂xf(u) + u]v dxdt+

∫
C

(u−ν
2 + f(u−)ν1)v ds, (1022)

where ν = (ν1, ν2) is the outward normal along V`, and the subscript “-” denotes the limit from the left.

Similarly,

0 =

∫
C
−(u+ν

2 + f(u+)ν1)v ds, (1023)

where the negative sign is added since −ν forms the outward normal from Vr and the subscript “+” denotes

the limit from the right. Combining our results, we see
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0 =

∫∫
V`

∫ ∞
0
−uvt − f(u)vx + uv dxdt+

∫∫
Vr

∫ ∞
0
−uvt − f(u)vx + uv dxdt

=

∫
C

(u−ν
2 + f(u−)ν1)v ds−

∫
C

(u−ν
2 + f(u−)ν1)v ds

=

∫
C

[
(u− − ur)ν2 + (f(u−)− f(ur))ν

2
]
v ds.

(1024)

This holds for all test functions v as above, and so

(u− − u+)ν2 + (f(u−)− f(u+))ν1 = 0 along C. (1025)

Lastly, suppose C is represented parametrically as C = {(x, t) : x = s(t)} for some smooth function

s : [0,∞)→ R. Differentiating yields (ṡ, 1), and so ν = (−1, ṡ)/‖(−1, ṡ)‖. Thus (1025) implies

f(u−)− f(u+) = ṡ(u− − u+) (1026)

in V , along the curve C. This result (1026) gives the Rankine-Hugonoit condition. �
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S15.2. Show that there is at most one solution to
utt − c2uxx + ut = 0 in R× [0,∞),

u = φ on R× {t = 0},

ut = ψ on R× {t = 0},

(1027)

where φ and ψ are smooth and there exists38 C > 0 such that |c′(x)| ≤ C for all x ∈ R.

Solution:

We claim solutions to the PDE are compactly support.39 Let u and v be two solutions to the PDE and

set w := u− v. Then w satisfies
wtt − c2wxx + wt = 0 in R× [0,∞),

w = wt = 0 on R× {t = 0},
(1028)

and so it suffices to verify w = 0 in R× (0,∞). To this end, define the energy E : [0,∞)→ R via

E(t) :=
1

2

∫
R

w2
t + c2w2

x dx. (1029)

Then the initial conditions in (1028) imply

E(0) =
1

2

∫
R

02 + c202 dx = 0. (1030)

38I think there was a typo in the original prompt.
39The solution to this problem becomes quite long if this is also to be verified... I’m not sure what the writers intended.
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Moreover, differentiating in time reveals

Ė(t) =

∫
R

wtwtt + c2wxwxt dx

=

∫
R

wt
(
wtt − ∂x[c2wx]

)
dx

=

∫
R

wt
(
wtt − c2wxx

)
dx− 2

∫
R

wtcc
′wx dx

≤ −
∫
R

wwt dx+ 2C

∫
R

wtcwx dx

≤ −
∫
R

w2
t dx+ C

∫
R

w2
t + c2w2

x dx

≤ CE(t).

(1031)

The second line holds via integration by parts, noting the boundary terms vanish since w has compact

support. The fourth line holds by our hypothesis regarding c′. The fifth line holds since

0 ≤ (a− b)2 = a2 + b2 − 2ab =⇒ ab ≤ 1

2
(a2 + b2), for all a, b ∈ R. (1032)

The final inequality holds since the first term on the fifth line is nonpositive. From Grownwall’s inequality,

it follows that

E(t) ≤ exp

(∫ t

0
C dτ

)
E(0) = exp(Ct)E(0) = 0. (1033)

And, because the integrand of E(t) contains only nonnegative terms, E(t) ≥ 0. Combining our results, we

deduce E(t) = 0 for all t ∈ [0,∞). This implies wt = 0 in R× (0,∞), i.e., w(x, ·) is constant. Therefore,

w(x̃, t̃) = w(x̃, 0) +

∫ t̃

0
wt(x̃, τ) dτ = 0 +

∫ t̃

0
0 dτ = 0, for all (x̃, t̃) ∈ R× (0,∞), (1034)

from which we conclude w = 0 in R× (0,∞), as desired. �
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S15.5. Consider the PDE

ut −∆u+ u2 = 0 in Rn × [0, T ]. (1035)

Suppose u and v are bounded solutions of the above problem with |u|, |v| ≤M and |u|, |v| −→ 0 as |x| −→ ∞

and

|u(x, 0)− v(x, 0)| < ε. (1036)

Show

|u(x, t)− v(x, t)| < ε exp (2Mt) in Rn × (0, T ]. (1037)

Solution:

By hypothesis, there exists R > 0 such that |u|, |v| ≤ ε/4 for |x| ≥ R. Then define Ω := B(0, R), set

ΩT := Ω× (0, T ], and set ΓT to be the parabolic interior of ΩT . Then define w := u− v− ε exp(2Mt), note

w < ε− ε = 0 on Ω× {t = 0}, and observe

w = u− v − ε exp(2Mt) ≤ ε

4
+
ε

4
− ε exp(2Mt) ≤ ε

4
+
ε

4
− ε = −ε

2
in (Rn −B(0, R))× [0, T ]. (1038)

These two observations reveal w < 0 in (Rn × [0, T ]) − ΩT . By way of contradiction, now suppose there

exists a point in ΩT at which w = 0. Since w is continuous and negative at time t = 0, there exists a first

time t̃ at which this occurs. So, let (x̃, t̃) ∈ ΩT be such that w(x̃, t̃) = 0. Then wt(x̃, t̃) ≥ 0 and, as x̃ is a

local max of w(·, t̃), we see ∆w(x̃, t̃) ≤ 0. Thus, at (x̃, t̃),

0 ≤ wt −∆w

= (u− v)t −∆(u− v)− 2Mε exp(2Mt)

= v2 − u2 − 2Mε exp(2Mt)

= v2 − [v + ε exp(2Mt)]2 − 2Mε exp(2Mt)

= −ε2 exp(4Mt) + 2[−v −M ]ε exp(2Mt)

≤ −ε2 exp(4Mt) + 2[|v| −M ]ε exp(2Mt)

≤ −ε2 exp(4Mt)

< 0,

(1039)
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a contradiction. Consequently, w < 0 in ΩT . Together our results demonstrate w < 0 in Rn × [0, T ],

i.e.,

u− v < ε exp(2Mt) in Rn × [0, T ]. (1040)

Reversing the roles of u and v in the definition of w and repeating an analogous argument reveals

v − u < ε exp(2Mt) in Rn × [0, T ], (1041)

and the result follows from (1040) and (1041). �

243 Last Modified: 4/26/2019



ADE Qual Notes Heaton

S15.8. a) Sketch the phase plane for the dynamical system

ẋ = x(1− y2), ẏ = y(1− x2). (1042)

Include behavior of trajectories that start near the equilibrium points [it is sufficient to determine what

the type of each equilibrium point is; you do not need to calculate the eigenvectors], and of any trajectories

that connect equilibrium points, along with the asymptotic form of the trajectories for large x and y.

b) Suppose instead the dynamical system was slightly modified to read

ẋ = x(1− y2), ẏ = y2(1− x2). (1043)

Prove the equilibrium point (x, y) = (1,−1) is stable.

Solution:

a) The equilibrium points are (0, 0), (±1,±1), and (∓1,±1). The Jacobian J(x, y) for the system is

J(x, y) =

 ∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y

 =

 1− y2 −2xy

−2xy 1− x2

 . (1044)

This implies

J(0, 0) =

 1 0

0 1

 , (1045)

which has the repeated eigenvalue 1. Thus, (0, 0) forms a source. Additionally,

J(±1,±1) =

 0 −2

−2 0

 and J(∓1,±1) =

 0 2

2 0

 , (1046)

and so for all the Jacobian matrices in (1046) the eigenvalues are λ = ±2. This shows (±1,±1) and

(∓1,±1) form saddle points. Nullclines occur along y = 1, x = 0, x = 1, and y = 0. With this, we

obtain the following plot.
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Figure 25: ODE Phase Plot for S15.8.

We note that along y = x we there is a trajectory from (0, 0) to (1, 1) and from (0, 0) to (−1,−1).

Similarly, along y = −x there is a trajectory from (0, 0) to (1,−1) and from (0, 0) to (−1, 1).

Now, for large x and y, we see

dy

dx
=
ẏ

ẋ
∼ −yx

2

−xy2
=
x

y
=⇒ y dy = x dx =⇒ y2 − x2 = C, (1047)

for some C ∈ R. This shows the asymptotic form of trajectories for large x and y is that of a

hyperbola.

b) We proceed by applying Lyapnov’s second method. We must show there exists a Lyapunov function

V (x, y) such that V (1,−1) = 0, V (x, y) > 0 in a neighborhood of (1,−1), and V̇ ≤ 0. Manipulating

our ODE reveals

dy

dx
=
ẏ

ẋ
=
y2(1− x2)

x(1− y2)
=⇒

(
y−2 − 1

)
dy =

(
x−1 − x

)
dx, (1048)

and upon integration we find there exists α ∈ R such that

0 = y−1 + y + ln(x)− x2

2
+ α, (1049)
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for some α ∈ R. Define the Lyapunov function V (x, y) via

V (x, y) := −y−1 − y − ln(x) +
x2

2
− 5

2
. (1050)

Note V (1,−1) = 0 and

V̇ =

(
1

y2
− 1

)
ẏ +

(
x− 1

x

)
ẋ

=
1

y2

(
1− y2

)
ẏ +

1

x

(
x2 − 1

)
ẋ

= (1− y2)(1− x2) + (x2 − 1)(1− y2)

= 0.

(1051)

Thus, V̇ ≤ 0. Furthermore, rearrangement reveals

V = −1

y

(
y2 + 1

)
+ (x− ln(x)) +

1

2

(
x2 − 2x

)
− 5

2

= −1

y

(
y2 + 2y + 1

)
+ (x− 1− ln(x)) +

1

2

(
x2 − 2x+ 1

)
= −(y + 1)2

y
+ (x− 1− ln(x)) +

(x− 1)2

2
.

(1052)

For q ∈ (0,∞) and f(x) := ln(x), Taylor’s theorem asserts there is ξ between 1 and q such that

f(q) = f(1)f ′(1)(q − 1) + f ′′(ξ)(q − 1)2, (1053)

which implies

q − 1− ln(q) = f ′(1)(q − 1)− ln(q) = −f(1)− f ′′(ξ)(q − 1)2 = 0 +
1

ξ2
(q − 1)2 > 0. (1054)

Consequently, the second term on the final line of (1052) is positive whenever x ∈ (0,∞)− {1}. The

first term is positive whenever y < 0. Thus, V (x, y) > 0 whenever x > 1 and y < 0, and , in particular,

in a neighborhood about (1,−1). Thus, we conclude from Lyapunov’s theorem that (1,−1) is stable.

�

246 Last Modified: 4/26/2019



ADE Qual Notes Heaton

2014 Fall

F14.1. An ecosystem contains two species. At time t, there are x individuals of species 1 and y individuals

of species 2. The dynamics of the two populations are described by the Lotka-Volterra equations

ẋ = 2x− x2 − xy, ẏ = y − xy. (1055)

a) Describe in words what the terms in the equations might represent.

b) Sketch the possible trajectories of the ecosystem in the (x, y) plane. Your sketch should include any

equilibrium points, null-clines, and the behavior of trajectories if x and y are both large.

Solution:

a) First we consider ẋ. The 2x term could represent the reproductive growth, meaning that as the

population of species 1 grows more individuals of species 1 will be born. The x2 term could model

a restriction on growth due to limited resources as x increases. The xy term could represent a

competition between the two species. Similarly, for ẏ, the y terms represents population growth and

the xy term corresponds to a reduction in population due to competition between the species.

b) We first analyze the ODE system. The equilibrium points are (0, 0), (1, 1), and (2, 0). The Jacobian

for the system is given by

J(x, y) =

 ∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y

 =

 2− 2x− y −x

−y 1− x

 . (1056)

This implies

J(0, 0) =

 2 0

0 1

 , (1057)

which has eigenvalues 2 and 1, thereby implying (0, 0) is an unstable source. Then

J(1, 1) =

 −1 −1

−1 0

 , (1058)
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which has eigenvalues λ = (−1± 3)/2 = −2, 1. Thus, (1, 1) forms a saddle. Lastly,

J(2, 0) =

 0 −2

0 −1

 , (1059)

which has eigenvalues λ = 0,−1. This implies (2, 0) is a sink. The null-clines are x = 0 and y = 2−x,

at which ẋ = 0, and y = 0 and x = 1, at which ẏ = 0. The trajectories are given in the figure below.

Figure 26: Trajectories plot for F14.1.

Lastly, for x and y large, we see

dy

dx
=
ẏ

ẋ
=

y − xy
2x− x2 − xy

∼ −xy
−x(x+ y)

=
y

x+ y
=⇒ dx

dy
= 1 +

x

y
. (1060)

Writing this in standard form yields
dx

dy
+ P (y)x = 1, (1061)

where P (y) = −y−1. Multiplying by the integrating factor

µ(y) = exp

(∫
P (y) dy

)
= exp (− ln(y)) =

1

y
(1062)
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yields
d

dy

[
x

y

]
=

1

y

dx

dy
− x

y2
=

1

y
=⇒ x = y ln(y) + Cy, (1063)

for some scalar C ∈ R. This gives the form of trajectories when x and y are large.

�
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F14.2.

a) Find the eigenfunctions and eigenvalues for 1 ≤ x ≤ 2 of the homogeneous ODE

x2y′′ + xy′ + λy = 0, where y(1) = y(2) = 0. (1064)

b) By expanding in these eigenfunctions or otherwise, solve the inhomogeneous ODE

x2y′′ + xy′ + 3y = x ln(x), where y(1) = y(2) = 0. (1065)

Solution:

a) This Cauchy-Euler equation admits solutions of the form xm. Plugging this in yields

0 = xm (m(m− 1) +m+ λ) = xm
(
m2 + λ

)
for all x ∈ (1, 2), (1066)

which implies m = ±
√
−λ. Therefore, the general solution to the ODE is of the form

y = c1x
√
−λ + c2x

−
√
−λ. (1067)

We now consider the three possible cases to determine the form of the eigenfunctions.

Case 1: Suppose λ = 0. This would imply that y = α for some constant α. The boundary condition

then implies α = 0, making the eigenfunction y identically zero, which contradicts the fact that ei-

genfunctions are nonzero functions.

Case 2: Suppose λ < 0. Let µ :=
√
−λ. Then observe the first boundary condition implies

0 = y(1) =
[
c1x

µ + c2x
−µ]

x=1
= c1 + c2 =⇒ c1

c2
= −1. (1068)

Similarly,

0 = y(2) =
[
c1x

µ + c2x
−µ]

x=2
= c12µ + c22−µ =⇒ c1

c2
= −2−2µ. (1069)
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Combining these two results reveals

− 1 =
c1

c2
= −2−2µ =⇒ −2µ = 0 =⇒ µ = 0, (1070)

a contradiction.

Case 3: Lastly, suppose λ > 0. Set α :=
√
λ so that we may write

y = c1x
iα + c2x

−iα = c1 exp
(
ln(xiα)

)
+ c2 exp

(
ln(x−iα)

)
= c1 exp (iα ln(x)) + c2 exp(−iα ln(x))

= d1 sin(α ln(x)) + d2 cos(α ln(x)),

(1071)

for some scalars d1 and d2, where we recall the relation eiθ = cos(θ) + i sin(θ). Then observe

0 = y(1) = d1 sin(α(ln(1))) + d2 cos(α ln(1)) = d1 sin(0) + d2 cos(0) = d2. (1072)

Since eigenfunctions are not identically zero, it follows that d1 6= 0. The second condition then implies

0 = y(2) = d1 sin(α ln(2)) =⇒ α ln(2) = kπ, (1073)

for some k ∈ Z. Combined with the fact α =
√
λ > 0, we see the eigenvalues are given by

λk =

(
kπ

ln(2)

)2

, for all k ∈ Z+, (1074)

and the resulting eigenfunctions are given, up to a scalar constant, by

yk = sin

(
kπ

ln(2)
· ln(x)

)
, for all k ∈ Z+. (1075)

b) We proceed by employing Sturm-Liouville theory. Letting p = x, q = 0, and r = 1/x, the ODE may
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be rewritten as 
(py′)′ + qy = −λyr in (0, 1),

1 · y(1) + 0 · y′(1) = 0,

1 · y(2) + 0 · y′(2) = 0,

(1076)

which is in Sturm-Liouville form. Therefore, the operator Ly := ((py′)′ + qy)/r = x(xy′)′ is self-

adjoint with respect to the scalar product

〈f, g〉 :=

∫ 2

1
f(x)g(x)r(x) dx. (1077)

This implies the set of eigenfunctions {yk} is orthogonal since for m 6= n we have λm 6= λn and

− λm 〈ym, yn〉 = 〈Lym, yn〉 = 〈ym, Lyn〉 = −λn 〈ym, yn〉 =⇒ 0 = (λm − λn) 〈ym, yn〉 , (1078)

and so 〈ym, yn〉 = 0. Consequently, the set of eigenfunctions {yk} form an orthogonal basis for the

space L2(1, 2) equipped with the scalar product 〈·, ·〉. So, let v be a solution to the given ODE in 2b)

and set g(x) := x ln(x). Then there exists scalars {αk}∞k=1 ⊂ R and {βk}∞k=1 ⊂ R such that

v =

∞∑
k=1

αkyk and g =

∞∑
k=1

βkyk, (1079)

since g and v are continuous and, thus, in L2(1, 2). Observe

〈g, yn〉 = 〈
∞∑
k=1

βkyk, yn〉 =

∞∑
k=1

βk 〈yk, yn〉 = βn 〈yn, yn〉 =⇒ βn =
〈g, yn〉
〈yn, yn〉

, for all n ∈ Z+.

(1080)

Expanding our series reveals

∞∑
k=1

βkyk = g = (L+ 3)v = (L+ 3)

∞∑
k=1

αkyk =

∞∑
k=1

αk(−λk + 3)yk. (1081)

Since the {yk} forms an orthogonal set, we may then equate coefficients to deduce

αk =
βk

3− λk
, for all k ∈ Z+, (1082)

where we note the division is well-defined since our work in a) implies there are no eigenfunctions with

eigenvalue 3. Together, (1079), (1080), and (1082) yields the solution v to the given inhomogeneous

ODE.
�
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F14.3. Consider Burgers’ equation


ut + uux = 0 in R× (0,∞),

u = cos(x) on R× {t = 0}.
(1083)

a) Derive an implicit form of the solution u(x, t) in terms of the initial data u(x, 0).

b) What is maxx∈R u(x, t)? You will need to use an implicit expression in terms of the initial data.

Solution:

a) We proceed by using the method of characteristics. Let F (p, q, z, x, t) = q + zp. Taking p = ux,

q = ut, and z = u yields F = 0 and gives rise to the ODE system of characteristic ODE
ẋ(s) = Fp = z, x(0) = x0,

ṫ(s) = Fq = 1, t(0) = 0,

ż(s) = Fpp+ Fqq = zp+ q = 0, z(0) = cos(x0).

(1084)

This implies t = s and z is constant along characteristics. Thus,

x(t) = x0 +

∫ t

0
ẋ(τ) dτ = x0 +

∫ t

0
z(τ) dτ = x0 + t cos(x0). (1085)

Consequently,

u(x, t) = z(t) = z(0) = cos(x0), (1086)

where x0 is defined implicitly via (1085).

b) We claim that for each t where u(·, t) is defined, maxx u(x, t) = 1. This note is important since,

although not noted in any way in the prompt, |ux| blows up by time t = 1. Note u(x, t) is bounded

above by unity for all time since the cosine function is bounded above by unity, i.e., cos(x0) ≤ 1 for

all x0 ∈ R. For the characteristic (x̃(t), t) starting at the origin (x0, 0) = (0, 0), we see cos(x0) = 1.

Whence

1 ≥ max
x

u(x, t) ≥ u(x̃, t) = cos(x0) = cos(0) = 1 =⇒ max
x

u(x, t) = 1, (1087)

as desired. �
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F14.5. Given φ ∈ H1(0, 1) with φ(0) = 0, define the energy

e(φ) =

∫ 1

0
ψ(φx) dx− Tφ(1), ψ(F ) := (F 2 − 1)2. (1088)

a) Derive a differential equation (and associated boundary conditions) satisfied by the extrema of this

energy.

b) Are the extrema unique?

Solution:

a) First define the admissibility class A := {y ∈ H1(0, 1) : y(0) = 0} and note A is a closed subset of

H1(0, 1). We seek to identify a PDE satisfied by extrema of e : A → R. Let u ∈ A be an extrema of

e. For all nonzero ε ∈ R and v ∈ A we see u+ εv ∈ A and

e(u+ εv)− e(u)

ε
=

∫ 1

0

ψ(ux + εvx)− ψ(vx)

ε
dx− Tv(1). (1089)

We shall compute the first variation, but first justify its existence. Note ψ may be expanded and

written as a polynomial, i.e., there exists scalars c0, c1, c2, c3, c4 ∈ R such that

ψ(α) =

4∑
k=0

ckα
k, (1090)

which implies

ψ(ux + εvx)− ψ(ux) =

4∑
k=0

ck

(
(ux + εvx)k − ukx

)
=

4∑
k=0

ck

([
k∑
`=0

(
k

`

)
uk−`x (εvx)`

]
− uk

)

=
n∑
k=1

k∑
`=1

ck

(
k

`

)
uk−`x (εvx)`.

(1091)

For each nonzero ε ∈ (−1, 1), it follows that

∣∣∣∣ψ(ux + εvx)− ψ(ux)

ε

∣∣∣∣ =

∣∣∣∣∣
n∑
k=1

k∑
`=1

ck

(
k

`

)
uk−`x v`xε

`−1

∣∣∣∣∣ ≤
n∑
k=1

k∑
`=1

|ck|
(
k

`

) ∣∣∣uk−`x v`x

∣∣∣ . (1092)
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Note the right hand side is contained in L1(0, 1) due to the fact ux, vx ∈ L2(0, 1) and the embedding

of Lp spaces. Whence the left hand side is dominated by an integrable function, and the dominated

convergence theorem implies

δe(u, v) = lim
ε→0

e(u+ εv)− e(u)

ε

= lim
ε→0

∫ 1

0

ψ(ux + εvx)− ψ(vx)

ε
dx− Tv(1)

=

∫ 1

0
lim
ε→0

ψ(ux + εvx)− ψ(vx)

ε
dx− Tv(1)

=

∫ 1

0
ψ′(ux)vx dx− Tv(1).

(1093)

Integrating by parts reveals

δe(u, v) =

∫ 1

0
−∂x

[
ψ′(ux)

]
v dx+

[
ψ′(ux)v

]1
0
− Tv(1)

=

∫ 1

0
−∂x

[
ψ′(ux)

]
v dx+ v(1)

[
ψ′(ux(1))− T

]
.

(1094)

Since v was chosen arbitrarily and the fact u is an extrema implies δe(u, v) = 0 for all v ∈ A,

we deduce u satisfies 
∂x[ψ′(ux)] = 0 in (0, 1),

ψ′(ux) = T on {x = 1},

u = 0 on {x = 0}.

(1095)

b) We claim the solutions are not necessarily unique. For example, suppose T = 0. Then observe u = 0

and u = x are distinct and both satisfy u(0) = 0 and[
ψ′(ux)

]
x=1

=
[
4ux(u2

x − 1)
]
x=1

= 0 = T, (1096)

and

∂x
[
ψ′(ux)

]
= ∂x

[
4ux(u2

x − 1)
]

= ∂x0 = 0 in (0, 1). (1097)

This shows the solutions to (1095) are not necessarily unique.

�

255 Last Modified: 4/26/2019



ADE Qual Notes Heaton

2014 Spring

S14.6. The function y(t) satisfies the ODE

ÿ = −y(1− y)2. (1098)

a) Determine the stability of any stationary points (justify your answers).

b) Sketch the solution orbits in the (y, y′) phase plane.

c) Now suppose that damping is added to the system to yield

ÿ + |y|ẏ = −y(1− y)2. (1099)

Prove the point (y, y′) = (0, 0) is asymptotically stable.

Solution:

a) Let x = ẏ so that the ODE may be rewritten as the system

ẏ = x, ẋ = −y(1− y)2. (1100)

The equilibrium points are (x, y) = (0, 0) and (x, y) = (0, 1). Since

∂ẋ

∂x
+
∂ẏ

∂y
=

∂

∂x

[
−y(1− y)2

]
+

∂

∂y
[x] = 0, (1101)

the system is Hamiltonian. This implies each equilibrium point is either a center or a saddle. The

Jacobian J(x, y) for the system is given by

J(x, y) =

 ∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y

 =

 0 −1 + 4y − 3y2

1 0

 . (1102)

Thus,

J(0, 0) =

 0 1

1 0

 , (1103)
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which has eigenvalues λ = ±i. Therefore, (0, 0) is a center, which is stable. Also,

J(0, 1) =

 0 0

1 0

 . (1104)

which has 0 as its repeated eigenvalue, and this does not reveal whether (0, 1) is a stable or not.

However, that just to the above (x, y) = (0, 1) we see ẋ < 0 and just below (0, 1) we see ẋ < 0 also.

And, just to the left of (0, 1) we see ẏ < 0 while to the right of (0, 1) we see ẏ > 0. So, (0, 1) must be

an unstable saddle.

b) We sketch the solution in the figure below.

Figure 27: ODE plot for S14.6.

c) We proceed by applying Lasalle’s theorem. To show (0, 0) is asymptotically stable, it suffices to define

a function V (x, y) for which V (0, 0) = 0, V̇ (x, y) ≤ 0 everywhere, V (x, y) > 0 in a neighborhood of

(0, 0), and (0, 0) is the unique fixed point for which V̇ (x, y) = 0. We first derive such a function V ,

using the undamped version of the ODE system (x̃, ỹ). Observe40

dỹ

dx̃
=

x̃

−ỹ(1− ỹ)2
=⇒

(
−ỹ + 2ỹ2 − ỹ3

)
dỹ = x̃ dx̃. (1105)

40Alternatively, we could take the approach of integrating to find the Hamiltonian, as done on other exams.
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Integrating reveals there exists α ∈ R such that

0 =
ỹ2

2
− 2ỹ3

3
+
ỹ4

4
+
x̃2

2
+ α. (1106)

Define the Lyapunov function V (x, y) via

V (x, y) :=
y2

2
− 2y3

3
+
y4

4
+
x2

2
. (1107)

Then V (0, 0) = 0. Furthermore, for the damped ODE we see

ẏ = x, ẋ = −y(1− y)2 − |y|x, (1108)

and so

V̇ =
(
y − 2y + y3

)
ẏ + xẋ

= y(1− y)2ẏ + xẋ

= y(1− y)2x+ x
[
−y(1− y)2 − |y|x

]
= −|y|x2

≤ 0.

(1109)

Furthermore, as y −→ 0, the y2 term in V (x, y) dominates, and so

V (x, y) ∼ x2 + y2

2
as y −→ 0, (1110)

revealing V (x, y) > 0 in a neighborhood of (0, 0). Lastly, note (1109) shows (0, 0) is the only fixed

point of V for which V̇ = 0. Thus, we conclude (0, 0) is asymptotically stable.

�
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S14.7. Let u ∈ C2(Ω) with u(x) +∇u ·n(x) = 0 for x ∈ ∂Ω where n(x) is the outward normal for x ∈ ∂Ω.

Consider r : C2(Ω)→ R defined as the scalar r(u) such that

E(r(u)) ≤ E(α), for all α ∈ R, (1111)

where

E(α) =

∫
Ω

(∆u+ αu)2 dx. (1112)

a) Show that

r(u) =

∫
Ω |∇u|

2 dx+
∫
∂Ω u

2 dσ∫
Ω u

2 dx
. (1113)

b) Show that if v minimizes r (over functions that satisfy v +∇v · n = 0) that

−∆v = r(v)v. (1114)

Solution:

a) Define φ(ε) := E(r(u) + ε). Then

φ′(ε) =
d

dε

[∫
Ω

(∆u+ (r(u) + ε)u)2 dx

]
=

∫
Ω

∂

∂ε

[
(∆u+ (r(u) + ε)u)2

]
dx

= 2

∫
Ω

(∆u+ (r(u) + ε)u) · u dx

= 2

∫
Ω
−|∇u|2 + (r(u) + ε)u2 dx+ 2

∫
∂Ω

(∇u · n)u dσ

= 2

∫
Ω
−|∇u|2 + (r(u) + ε)u2 dx− 2

∫
∂Ω
u2 dσ.

(1115)

By our hypothesis (1111), φ′(0) = 0, which implies

0 =

∫
Ω
−|∇u|2 + r(u)u2 dx−

∫
∂Ω
u2 dσ = −

[∫
Ω
|∇u|2 dx+

∫
∂Ω
u2 dσ

]
+ r(u)

∫
Ω
u2 dx, (1116)

upon which rearranging yields the desired equality (1113), where we note r(u) is a constant with

respect to the integration and can, thus, be pulled outside the integral.
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b) First note r(u) is scale invariant, i.e., r(cu) = r(u) for all c 6= 0. This follows from the linearity of the

integral and (1113). Consequently, the minimizer v of r is also a solution to

min
u∈A

J(u) :=

∫
Ω
|∇u|2 dx+

∫
∂Ω
u2 dσ, (1117)

where

A := {u ∈ C2(Ω) : u+∇u · n = 0, G(u) = 1}, G(u) :=

∫
Ω
u2 dx. (1118)

Lagrange’s theorem for multipliers asserts there exists λ ∈ R such that v satisfies

δJ(v, w) = λδG(v, w), for all w ∈ A. (1119)

Through direct computation, we see

δJ(u,w) =
d

dε
[J(u+ εw)]ε=0

=
d

dε

[∫
Ω
|∇u+ ε∇w|2 dx+

∫
∂Ω

(u+ εw)2 dσ

]
ε=0

=

∫
Ω

2∇u · ∇w dx+

∫
∂Ω

2uw dσ

=

∫
Ω
−2w∆u dx+

∫
∂Ω

2(u+∇u · n)w dσ︸ ︷︷ ︸
=0

=

∫
Ω
−2w∆u dx.

(1120)

Similarly,

δG(u,w) =
d

dε
[G(u+ εw)]ε=0=

d

dε

[∫
Ω

(u+ εw)2 dx

]
ε=0

=

∫
Ω

2uw dx. (1121)

Compiling our results yields

0 =

∫
Ω

(∆v + λv)w dx =⇒ −∆v = λv, (1122)

260 Last Modified: 4/26/2019



ADE Qual Notes Heaton

where the implication holds since the first equality holds for all w ∈ A. However,

r(v) =

∫
Ω
|∇v|2 dx+

∫
∂Ω
v2 dσ

=

∫
Ω
−v∆v dx+

∫
∂Ω

(v +∇v · n)v dσ︸ ︷︷ ︸
=0

=

∫
Ω
λv2 dx

= λ.

(1123)

Whence (1122) and (1123) imply (1114) holds, as desired.

�
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S14.8. Consider Burgers’ equation

ut + f(u)x = 0 (1124)

for u(x, t) over the periodic domain (0, 1) × (0,∞), where f(u) = 1
2u

2. Solve the periodic initial value

problem for u(x, t) with initial data

u(x, 0) =


1 if 0 < x < α,

0 if α < x < 1,

(1125)

for an arbitrary α ∈ (0, 1).

Solution:

We proceed by using the method of characteristics. Let F (p, q, z, x, t) = q+f ′(z)p = q+zp. Taking p = ux,

q = ut, and z = u yields F = 0 and gives rise to the system of characteristic ODE
ẋ(s) = Fp = z, x(0) = x0,

ṫ(s) = Fq = 1, t(0) = 0,

ż(s) = Fpp+ Fqq = zp+ q = 0, z(0) = 0.

(1126)

This implies t = s and z is constant along characteristics. Thus,

x(t) = x0 +

∫ t

0
ẋ(τ) dτ = x0 +

∫ t

0
z(τ) dτ = x0 + g(x0)t =


x0 + t, if x0 ∈ (0, α),

x0, if x0 ∈ (α, 1),

(1127)

where we set g(x) := u(x, 0). This shows the characteristics crash immediately at (α, 0). Now we must

consider two separate cases:

Case 1: α ≥ 1/2. Applying the Rankine-Hugoniot (RH) condition yields that the shock curve, parame-

terized as (s(t), t), satisfies s(0) = α and

ṡ(t) =
f(u`)− f(ur)

u` − ur
=

1
2 · 1

2 + 1
2 · 0

2

1− 0
=

1

2
=⇒ s(t) = α+

t

2
. (1128)

A time t? = 2(1 − α) ≤ 1, the shock curve hits (s(t?), t?) = (1, t?), at which we must again use the RH
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condition to determine the future behavior of the shock curve. In (0, 1)× (0, t?) we have

u(x, t) =


x/t if 0 < x < t,

1 if t ≤ x ≤ s(t),

0 if s(t) ≤ x < 1,

(1129)

where the value for 0 < x/t < 1 is determined by assuming u is of the form u(x, t) = v(x/t) and plugging

this into our PDE to find

0 = ut + f ′(u)ux = v′ · − x
t2

+ vv′ · x
t

=
v

t

[
v − x

t

]
=⇒ v =

x

t
, (1130)

assuming v is nonzero.

For time t > 1, the RH condition for the shock curve reveals

ṡ(t) =
f(u`)− f(ur)

u` − ur
=

1
2 · (x/t)

2 + 1
2 · 0

2

x/t− 0
=

x

2t
. (1131)

Using separation of variables with x = s(t) gives

∫
ds̃

s̃
=

∫
dt̃

2t̃
=⇒ s(t) = Ct1/2, (1132)

where C is such that s(t?) = 1.

(Return and complete. This is MESSY.) �
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2013 Fall

F13.1. Consider the ODE system

ẋ = v, v̇ = −dψ

dx
(x)− αv, (1133)

for a given function ψ(x) ∈ C2(R).

a) Find all stationary points and analyze their type when ψ(x) = 1
2(x2 − 1)2.

b) Sketch the phase plane for ψ(x) = 1
2(x2 − 1)2.

c) Show that H(x, v) = v2

2 + ψ(x) is nonincreasing in time.

Solution:

a) Since ψ′(x) = 2x(x2 − 1), we see the stationary points are (x, v) = (±1, 0) and (x, v) = (0, 0). The

Jacobian for the system is given by

J(x, y) =

 ∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y

 =

 0 1

−ψ′′(x) −α

 . (1134)

Then observe

ψ′′(x) =
d

dx

[
1

2
· 2(x2 − 1)1 · 2x

]
=

d

dx

[
2x3 − 2x

]
= 6x2 − 2. (1135)

From this, we see

J(0, 0) =

 0 1

2 −α

 , (1136)

which has eigenvalues

λ =
−α±

√
α2 + 8

2
, (1137)

and so (0, 0) is a saddle point. In similar fashion,

J(±1, 0) =

 0 1

−(6 · 1− 2) −α

 =

 0 1

−4 −α

 , (1138)
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which has eigenvalues satisfying the characteristic equation

0 = λ(λ+ α) + 4 = λ2 + λα+ 4 =⇒ λ =
−α±

√
α2 − 16

2
. (1139)

We assume α corresponds to a damping term and can be taken to be positive. In this case, we see the

real portion of the eigenvalues of J(±1, 0) is negative. Then (±1, 0) can be characterized according

to the following cases. If α ∈ (0, 4), then the eigenvalues are complex-valued and (±1, 0) correspond

to inward pointing stable spirals. If α = 4, then (±1, 0) correspond to nodes. And, if α > 4, then

(±1, 0) form sinks.

b) The phase plane for α = 1 is given below.

Figure 28: Phase plane for F13.1.

c) Differentiating in time reveals

Ḣ = vv̇ + ψ′(x)ẋ = v
(
−ψ′(x)− αv

)
+ ψ′(x)v = −αv2 ≤ 0. (1140)

This shows Ḣ ≤ 0, and so we conclude H is nonincreasing, as desired.

�
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F13.2. Let f : R2 → R, g : Ω→ R for Ω ⊂ R2. Let E(u) be defined as

E(u) =

∫
Ω
f(ux, uy) + gu dA+

1

2

∫
∂Ω
u2 dσ, (1141)

for u ∈ C2(Ω).

a) Suppose f(v, w) = 1
2(v2 + w2) and g ∈ L2(Ω). Show that the minimizer exists in H1(Ω).

b) What differential equation with what boundary equations does the minimizer of E over u ∈ C2(Ω)

satisfy? Assume f ∈ C2(R2) and g ∈ L2(Ω).

Solution:

a) Letting z = (x, y), note the functional may be rewritten as

E(u) =

∫
Ω

1

2
|Du|2 + gu dz +

1

2

∫
∂Ω
u2 dσ. (1142)

For notational convenience, set H := H1(Ω) and let 〈·, ·〉 and ‖ · ‖H be the usual scalar product and

norm on H, respectively. We claim there exists a unique u ∈ H such that

B[u, v] = `(v), for all v ∈ H, (1143)

where we define the bilinear form B and the linear form ` via

B[u, v] :=

∫
Ω
Du ·Dv dz +

∫
∂Ω
Tuv dσ and `(v) := −

∫
Ω
gv dz, (1144)

with T denoting the trace (which we shall omit writing). This implies, for all v ∈ H and ε ∈ R,

E(u+ εv) =

∫
Ω

1

2
|Du+ εDv|2 + g(u+ εv) dz +

1

2

∫
∂Ω

(u+ εv)2 dσ

=

∫
Ω

1

2
|Du|2 + εDu ·Dv +

ε2

2
|Dv|2 + gu+ εgv dz +

1

2

∫
∂Ω
u2 + 2εuv + ε2v2 dσ

= E(u) + ε (B[u, v]− `(v)] + ε2

[
1

2

∫
Ω
|Dv|2 dz +

1

2

∫
∂Ω
v2 dσ

]
= E(u) + ε2

[
1

2

∫
Ω
|Dv|2 dz +

1

2

∫
∂Ω
v2 dσ

]
.

(1145)
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Consequently, for all v ∈ H,

δE(u, v) = lim
ε→0+

E(u+ εv)− E(u)

ε
= lim

ε→0+
ε

[
1

2

∫
Ω
|Dv|2 dz +

1

2

∫
∂Ω
v2 dσ

]
= 0. (1146)

Therefore, u is a critical point of E. Furthermore, E is convex since, for all u, v ∈ H and λ ∈ (0, 1),

E(λu+ (1− λv)) =
1

2
‖λDu+ (1− λ)Dv‖2L2(Ω) +

1

2
‖λu+ (1− λ)v‖2L2(∂Ω) +

∫
Ω
g[λu+ (1− λ)v] dz

≤ λ
[

1

2
‖Du‖2L2(Ω) +

1

2
‖u‖2L2(∂Ω) +

∫
Ω
gu dz

]
+ (1− λ)

[
1

2
‖Dv‖2L2(Ω) +

1

2
‖v‖2L2(∂Ω) +

∫
Ω
gv dz

]
= λE(u) + (1− λ)E(v),

(1147)
where we note norms are convex, compositions of convex functions are convex, and φ(α) := α2 is

convex since φ′′(α) = 2 > 0. Therefore, all critical points of E are minimizers of E, from which we

conclude u ∈ H is a minimizer of E.

All that remains is to verify (1143), which we do by applying the Lax-Milgram theorem. It suffices

to show B[·, ·] is bounded and coercive and `(·) is bounded. Assuming Ω is bounded and ∂Ω is C1,

the trace theorem implies there exists C > 0, dependent only on Ω, such that

|B[u, v]| ≤ ‖Du ·Dv‖L1(Ω) + ‖uv‖L1(Ω)

≤ ‖Du‖L2(Ω)‖Dv‖L2(Ω) + ‖u‖L2(∂Ω)‖v‖L2(∂Ω)

≤ ‖u‖H‖v‖H + C‖u‖L2(Ω)‖v‖L2(Ω)

≤ (1 + C)‖u‖H‖v‖H ,

(1148)

where we have made repeated use of Hölder’s inequality above. Observe ` is bounded since

|`(v)| ≤ ‖gv‖L1(Ω) ≤ ‖g‖L2(Ω)‖v‖L2(Ω) ≤ ‖g‖L2(Ω)‖v‖H , for all v ∈ H. (1149)

Lastly, by way of contradiction, suppose B[·, ·] is not coercive, i.e., there does not exist a scalar β > 0

such that

β‖u‖2H ≤ B[u, u], for all u ∈ H. (1150)
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This implies there exists a sequence of nonzero functions {uk} ⊂ H such that

lim
k→∞

B[uk, uk] <
1

k
‖uk‖2H , for all k ∈ N. (1151)

Setting vk := uk/‖uk‖H yields ‖vk‖H = 1, for all k ∈ N, and

lim
k→∞

‖Dvk‖2L2(Ω) + ‖Tvk‖2L2(∂Ω) = lim
k→∞

B[vk, vk] = 0. (1152)

Assuming ∂Ω is C1 and Ω is bounded, the Rellich-Kondrachov compactness theorem41 asserts H

is compactly embedded in L2(Ω). Thus {vk} is precompact in L2(Ω), i.e., there is a subsequence

{vnk} ⊂ {vk} and v? ∈ L2(Ω) such that

lim
k→∞

‖vnk − v?‖L2(Ω) = 0. (1153)

Let α be a multi-index with |α| = 1 and φ ∈ C∞c (Ω). Then observe

lim
k→∞

∣∣∣∣∫
Ω
vnk∂αφ dx

∣∣∣∣ = lim
k→∞

∣∣∣∣−∫
Ω
φ∂αvnk dx

∣∣∣∣ ≤ lim
k→∞

‖φ∂αvnk‖L1(Ω) ≤ lim
k→∞

‖φ‖L2(Ω)‖Dvnk‖L2(Ω) = 0,

(1154)

where the final equality holds by (1152) and the second inequality is an application of Hölder’s

inequality. Similarly, (1153) implies

lim
k→∞

∣∣∣∣∫
Ω

(v? − vnk)φ dx

∣∣∣∣ ≤ lim
k→∞

‖(v? − vnk)φ‖L1(Ω) ≤ lim
k→∞

‖v? − vnk‖L2(Ω)‖φ‖L2(Ω) = 0. (1155)

These two results reveal

∫
Ω
v?∂αφ dx = lim

k→∞

∫
Ω

(v?− vnk + vnk)∂αφ dx = lim
k→∞

∫
Ω

(v?− vnk)φ dx+

∫
Ω
vnk∂αφ dx = 0. (1156)

By the arbitrariness of α and φ, this implies v? has a weak derivative Dv? and Dv? = 0 a.e. in Ω,

41See Theorem 1 on page 288 of the PDE text by Evans.
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i.e., v? is constant a.e. in Ω. Again using the trace theorem, we see

‖v?‖L2(∂Ω) ≤ lim
k→∞

‖v? − vnk‖L2(∂Ω) + ‖vnk‖L2(∂Ω)

≤ lim
k→∞

C‖v? − vnk‖L2(Ω) + ‖vnk‖L2(∂Ω)

= C0 + 0

= 0,

(1157)

where the third line follows from (1152) and (1153). Since v? is constant a.e., this reveals v? = 0 a.e.

in Ω. Therefore,

1 = lim
k→∞

‖vnk‖H = lim
k→∞

‖vnk‖2L2(Ω) +‖Dvnk‖2L2(Ω) = lim
k→∞

‖vnk−v?‖2L2(Ω) +‖Dvnk‖2L2(Ω) = 0, (1158)

which implies 1 = 0, a contradiction. Whence the initial assumption was false, and the result follows.

b) Using a general f ∈ C2, we compute the first variation of E,

δE(u, v) =
d

dε
[E(u+ εv)]ε=0

=
d

dε

[∫
Ω
f(Du+ εDv) + g(u+ εv) dz +

1

2

∫
∂Ω

(u+ εv)2 dσ

]
ε=0

=

[∫
Ω
∇qf(Du+ εDv) ·Dv + gv dz +

∫
Ω

(u+ εv)v dσ

]
ε=0

=

∫
Ω
∇qf(Du) ·Dv + gv dz +

∫
∂Ω
uv dσ,

(1159)

where we let q = (u, v) denote the input argument of f . Note this generalizes the form of B[u, v]−`(v)

in a) where there f(Du) = 1
2 |Du|

2 and ∇qf(Du) = Du. If u ∈ C2(Ω) is a minimizer of E, then

δE(u, v) = 0 for all v ∈ H, which implies

0 =

∫
Ω
∇qf(Du) ·Dv + gv dz +

∫
∂Ω
uv dσ

=

∫
Ω

(−∇z · [∇qf(Du)] + g) v dz +

∫
∂Ω

(∇qf(Du) · n+ u) v dσ,

(1160)
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where n is the outward normal along ∂Ω. By the arbitrariness of v, it follows that u satisfies


−∇z · [∇qf(Du)] + g = 0 in Ω,

∇qf(Du) · n+ u = 0 on ∂Ω.

(1161)

�
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F13.3. Consider the initial value problem


ut + f(u)x = 0 in R× (0,∞),

u = φ on R× {t = 0}.
(1162)

Assume there exists θ > 0 such that f ′′(u) ≥ θ for all u. Show that if φ(x) = −x, then |ux| −→ ∞

in finite time.

Solution:

We proceed by using the method of characteristics. Define F (p, q, z, x, t) = q + f ′(z)p. Taking q = ut,

p = ux, and z = u yields F = 0 and gives rise to the ODE system



ṗ(s) = −Fx − Fzp = 0− f ′′(z)p2, p(0) = −1,

q̇(s) = −Ft − Fzq = 0− f ′′(z)pq, q(0) = −f ′(z(0))p(0),

ẋ(s) = Fp = f ′(z), x(0) = x0,

ṫ(s) = Fq = 1, t(0) = 0,

ż(s) = Fpp+ Fqq = f ′(z)p+ q = 0, z(0) = −x0.

(1163)

This implies t = s and z is constant along characteristics. Additionally,

ṗ(s) = −f ′′(z(s))p2(s) ≤ −θp2(s) ≤ 0, (1164)

which shows p(s) is nonincreasing. Combined with the fact p(0) = −1 < 0, we deduce p(s) ≤ −1 < 0 for

all s. Moreover, using separation of variables reveals

∫ p(t)

p(0)

dp̃

p̃2
=

∫ t

0
−f ′′(z(τ)) dτ ≤

∫ t

0
−θ dτ = −θt, (1165)

which implies

− 1− 1

p(t)
=

1

p(0)
− 1

p(t)
≤ −θt =⇒ 0 ≤ 1

|p(t)|
= − 1

p(t)
≤ 1− θt. (1166)

Thus,

0 = lim
t→(1/θ)−

0 ≤ lim
t→(1/θ)−

1

|p(t)|
≤ lim

t→(1/θ)−
1− θt = 0, (1167)
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and so the squeeze lemma asserts 1/|p(t)| −→ 0 as t −→ (1/θ)−. However, this is the case if and only if |p(t)|

diverges by the time t = 1/θ. Consequently, we conclude |ux| = |p(t)| −→ ∞ in finite time. �
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F13.4. Consider the PDE42


utt + c2uxxxx + aut = 0, in R× (0,∞),

u = φ on R× {t = 0},

ut = ψ on R× {t = 0},

(1168)

where a > 0 and φ and ψ have compact support.

a) For solutions with compact support, define an associated energy E(t) that is nonincreasing in time.

b) Use this to show that solutions to (1168) are unique.

Solution:

a) Define the energy by

E(t) :=
1

2

∫
R

u2
t + c2u2

xx dx. (1169)

For solutions with compact support, this choice of energy E(t) is well-defined. Differentiating in time

reveals

Ė(t) =

∫
R

ututt + c2uxxuxxt dx

=

∫
R

ututt − c2uxxxuxt dx

=

∫
R

ut
(
utt + c2uxxxx

)
dx

=

∫
R

−au2
t dx

≤ 0.

(1170)

The second and third lines hold via integration by parts, noting the boundary terms vanish since

u is assumed to have compact support. This shows Ė(t) ≤ 0 for all t ∈ [0,∞). Whence E(t) is

nonincreasing.

b) Suppose u and v are solutions to the PDE (1168) with compact support. Then set w := u− v, which

implies 
wtt − c2wxxxx + awt = 0 in R× (0,∞),

w = wt = 0 on R× {t = 0}.
(1171)

42We have changed the PDE to have a “+” rather than a “-” following utt as there appears to have been a typo in the
original prompt.
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Thus, it suffices to show w = 0 in R× (0,∞). Now consider the energy E(t) defined as in (1169), but

with w in place of u. By (1171), we know wt = wxx = 0 on R × {t = 0}, and so E(0) = 0. And, by

our result in a), we know E(t) is nonincreasing. However, since the integrand in the definition of E(t)

is nonnegative, we deduce 0 ≤ E(t) ≤ E(0) = 0, and so E(t) = 0 for all t ∈ [0,∞). Assuming c 6= 0,

this implies wt = wxx = 0 in R× (0,∞). Thus, w is constant in time and linear in x, i.e., of the form

w(x, t) = α1x+ α2, (1172)

for some constants α1, α2 ∈ R. Because w(0, 0) = 0, we know α2 = 0. And, since α1x = w(x, 0) = 0

for all x ∈ R, α1 = 0 also. (One could also argue from the compact support of w, arising from the

compact support of u and v.) Therefore, w = 0 in R× (0,∞), as desired.

�
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F13.5. Let u(x, t) be the solution of the Cauchy problem for the heat equation


ut − uxx = 0 in R× (0, T ),

u = 0 on R× {t = 0}.
(1173)

Prove that if there exists scalars C and a such that

|ut| ≤ Ceax
2

and |∂βu| ≤ Ceax2
in R× (0, T ), (1174)

where β is any multi-index with |β| ≤ 2, then u ≡ 0.

Solution:

(See Theorem 6 on page 57 in §2.3 of the PDE text by Evans.) �
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F13.6. Consider the Cauchy problem


ut − ux + u2 = 0 in R× (0, T ),

u = ψ on R× {t = 0},
(1175)

where ψ is smooth with compact support. Prove the existence and uniqueness of a smooth solution

when T is small.

Solution:

We begin by analyzing our PDE via the method of characteristics. Define F (p, q, z, x, t) := q − p + z2.

Taking q = ut, p = ux, and z = u, we see F = 0 and obtain the system of ODE
ẋ(s) = Fp = −1, x(0) = x0,

ṫ(s) = Fq = 1, t(0) = 0,

ż(s) = Fpp+ Fqq = −p+ q = −z2, z(0) = ψ(x0).

(1176)

This implies t = s, x = x0 − t, and

z(t) = z(0) +

∫ t

0
ż(τ) dτ = ψ(x+ t)−

∫ t

0
z2(τ) dτ. (1177)

Let T ∈ (0,∞) be chosen sufficiently small to ensure

4T‖ψ‖∞ ≤
1

2
, (1178)

where ‖ · ‖∞ denotes the sup norm and ψ ∈ L∞(R) since ψ is smooth with compact support. Thus, (1177)

reveals u is a solution to the PDE if and only if u is a fixed point of the operator ϕ : V → V defined by

ϕ(u)(x, t) := ψ(x+ t)−
∫ t

0
u2(x− τ, τ) dτ, (1179)

where we note our above results show the characteristics are linear, originating at (x, 0) and proceeding in

the direction (ẋ, ṫ) = (−1, 1), and we set V := B(R× (0, T )→ R) to be the space of bounded continuous

functions mapping R× [0, T ) into R. Observe V is a complete metric space when equipped with the sup

norm ‖ · ‖∞.
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We shall now obtain our result by applying the Banach fixed point theorem. Let W := {w ∈ V : ‖w‖∞ ≤

2‖ψ‖∞}. We claim W is closed, and so W ⊆ V is complete also. To apply the theorem, it suffices to

show the restriction of ϕ to W maps into W and that ϕ is a contraction. Indeed, by our choice of W , the

definition of ϕ, and the inequality (1178),

‖ϕ(w)‖∞ ≤ ‖ψ‖∞+T‖w‖2 ≤ ‖ψ‖∞+4T‖ψ‖2∞ ≤ ‖ψ‖∞+
1

2
· ‖ψ‖∞ ≤ 2‖ψ‖∞ =⇒ ϕ(w) ∈W. (1180)

Next, for all u, v ∈W and (x, t) ∈ R× [0, T ), we see

|ϕ(u)(x, t)− ϕ(v)(x, t)| =
∣∣∣∣−∫ t

0
u2(x− τ, τ)− v2(x− τ, τ) dτ

∣∣∣∣
≤
∫ T

0
‖u− v‖∞‖u+ v‖∞ dτ

= T‖u− v‖∞‖u+ v‖∞

≤ 4T‖ψ‖‖u− v‖∞

≤ 1

2
‖u− v‖∞.

(1181)

Since the right hand side above forms an upper bound among all (x, t) ∈ R × (0, T ), it follows from

the definition of the supremum that

‖ϕ(u)− ϕ(v)‖∞ ≤
1

2
‖u− v‖∞, (1182)

i.e., ϕ is a contraction on W . Whence ϕ has a unique fixed point in W . Since the fixed points of ϕ are

solutions to the PDE (1175), the result follows.

All that remains is to verify W is closed. Let {ϕn}n∈N be any convergent sequence in W with limit ϕ̃. It

suffices to show ϕ̃ is necessarily in W . Since ‖ϕn‖∞ ≤ 2‖ψ‖∞, for all n ∈ N, it follows from elementary

analysis and the continuity of the norm that

‖ϕ̃‖∞ = lim
n→∞

‖ϕn‖∞ ≤ lim
n→∞

2‖ψ‖∞ = 2‖ψ‖∞ =⇒ ϕ̃ ∈W, (1183)

and the proof is complete. �
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F13.8. Consider the Neumann problem in the half-plane


∆u = 0 in R× (0,∞),

uy = f on R× {y = 0}.
(1184)

a) Show that if f = 0 and u(x, y) −→ 0 as (x2 + y2) −→∞, then u ≡ 0.

b) Assume f has compact support and
∫
R
f(x) dx = 0. Prove there exists a solution to the PDE that

tends to zero when (x2 + y2) −→∞.

Solution:

a) Let D := R× (0,∞) and z = (x, y). Then, multiplying the PDE by u, we see

0 =

∫
D
u∆u dz

= −
∫
D
|∇u|2 dz +

∫
∂D

u
∂u

∂n
dσ

= −
∫
D
|∇u|2 dz +

∫ ∞
−∞

u(x, 0)uy(x, 0) dx︸ ︷︷ ︸
=0

= −
∫
D
|∇u|2 dz.

(1185)

This implies ∇u = 0 in D, i.e., u is constant. Since u −→ 0 as |z| −→ ∞, it then follows that

u ≡ 0.

b) Since f has compact support, f is a Schwarz function and its Fourier transform exists. Thus, taking

the Fourier transform of the PDE, in the variable x, reveals


−4π2|ξ|2û+ ûyy = 0 in D,

ûy = f̂ on ∂D.

(1186)

Thus,

û(ξ, y) = C1(ξ) exp (2π|ξ|y) + C2(y) exp (−2π|ξ|y) in D, (1187)

for some functions C1(ξ) and C2(ξ). Since y ≥ 0 and we are interested in solutions that tend to zero
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as y −→ +∞, we take C1(ξ) = 0. Then the boundary condition implies

û(ξ, y) = − f̂(ξ)

2π|ξ|
exp (−2π|ξ|y) . (1188)

We then take the inverse Fourier transform to find an expression describing u(x, y). Observe

u(x, y) =

∫ ∞
−∞
− f̂(ξ)

2π|ξ|
exp (−2π|ξ|y + 2πixξ) dξ

=

∫ 0

−∞

f̂(ξ)

2πξ
exp (2π(−y + ix)ξ) dξ +

∫ 0

−∞
− f̂(ξ)

2πξ
exp (2π(y + ix)ξ) dξ

=

∫ 0

−∞

f̂(ξ)

2πξ
· 1

2π(y + ix)

d

dξ
[exp (2π(y + ix)ξ)] dξ

+

∫ ∞
0
− f̂(ξ)

2πξ
· 1

2π(−y + ix)

d

dξ
[exp (2π(−y + ix)ξ)] dξ

=

[
f̂(ξ)

2πξ
· exp(2π(y + ix)ξ)

2π(y + ix)ξ

]0

−∞

− 1

2π(y + ix)

∫ 0

−∞

d

dξ

[
f̂(ξ)

2πξ

]
exp (2π(y + ix)ξ) dx

+

[
− f̂(ξ)

2πξ
· exp(2π(−y + ix)ξ)

2π(−y + ix)ξ

]0

−∞

− 1

2π(−y + ix)

∫ ∞
0

d

dξ

[
− f̂(ξ)

2πξ

]
exp (2π(−y + ix)ξ) dx.

(1189)

The other condition on f implies f̂(0) = f̂ ′(0) = 0. With the fact that f̂ −→ 0 as |ξ| −→ ∞,[
− f̂(ξ)

2πξ
exp(2πiξ(−y + ix))

]0

−∞

= lim
ξ→0−

− f̂(ξ)

2πξ
exp(2πi(−y + ix)) = 0. (1190)

Similarly, the other boundary condition terms vanish. Letting α1 and α2 be the remaining integrals

following the final equality in (1189), which are finite since the inverse Fourier transform exists, we

see

u(x, y) =
α1

2π(y + ix)
+

α2

2π(−y + ix)
(1191)

which implies

|u(x, y)| ≤ |α1|+ |α2|
2π
√
x2 + y2

−→ 0 as x2 + y2 −→∞. (1192)

Therefore, the choice of u in (1191) is a solution to the PDE that satisfies the required condition, and

the result follows.

�
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2013 Spring

S13.2. Let u be a solution to 
utt − uxx + cu = 0 in R× (0,∞),

u = ϕ on R× {t = 0},

ut = ψ on R× {t = 0}.

(1193)

Assume c(x, t), ϕ(x), and ψ(x) are smooth functions equal to zero for |x| > R. Prove that u(x, t) = 0 for

|x| > R+ t.

Solution:

Let t0 > 0, and then fix any x0 ∈ R− B(0, R + t0). It suffices43 to show u(x0, t0) = 0. Define the energy

e : [0, t0)→ R via

e(t) :=
1

2

∫
S(t)

u2
t + u2

x dx, (1194)

where for each t ∈ [0, t0) we define S(t) := B(0, R+ (t0− t)). By our hypothesis, ϕ = ψ = 0 in S(0), which

implies e(0) = 0. Differentiating in time further reveals

ė(t) =

∫
S(t)

ututt + uxuxt dx+

∫
∂S(t)

1

2

(
u2
t + u2

x

)
v · n dσ

=

∫
S(t)

ut (utt − uxx) dx+

∫
∂S(t)

ut
∂u

∂n
+

1

2

(
u2
t + u2

x

)
v · n dσ

=

∫
S(t)
−cu dx︸ ︷︷ ︸
=0

+

∫
∂S(t)

ut
∂u

∂n
− 1

2

(
u2
t + u2

x

)
dσ,

(1195)

where v = −n is the Eulerian velocity of the boundary, n is the outward normal along the boundary

∂S(t), and the first integral on the final line vanishes since S(t) does not intersect with the support of c.

For all a, b ∈ R we have

0 ≤ (a− b)2 = a2 + b2 − 2ab =⇒ ab ≤ 1

2
(a2 + b2). (1196)

43From our experiences with grading on the ADE exam, we assume that the graders would not be happy if we merely applied
Duhamel’s principle with d’Alembbert’s formula to assert a formula for u, even though this seems perfectly reasonable to do.
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Combined with the Cauchy-Schwarz inequality, this implies

∣∣∣∣ut ∂u∂n
∣∣∣∣ = |ut| |ux · n| ≤ |ut||ux| ≤

1

2
(u2
t + u2

x), (1197)

and so

ė(t) =

∫
∂S(t)

ut
∂u

∂n
− 1

2

(
u2
t + u2

x

)
dσ ≤

∫
∂S(t)

1

2
(u2
t + u2

x)− 1

2
(u2
t + u2

x) dσ = 0. (1198)

This implies e(t) is nonincreasing. Since the integrand in the definition of e(t) is nonnegative, we see that

0 ≤ e(t) ≤ e(0) = 0 for all t ∈ [0, t0). Consequently, ut = ux = 0 in the cone

K(x0, t0) := {(x, t) : t ∈ [0, t0), x ∈ B(x0, t− t0)}, (1199)

and so u is constant therein. Combined with the fact u = 0 on S(0) × {t = 0}, we see u = 0 everywhere

in K(x0, t0). In particular, this shows u(x0, t) = 0 for all t ∈ [0, t0). By the continuity of the solution u, it

follows that

u(x0, t0) = lim
t→t−0

u(x0, t) = lim
t→t−0

0 = 0, (1200)

as desired. �
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S13.4.

a) Let

∆u− qu = 0 in Rn, (1201)

where q(x) ≥ 0 is bounded. suppose u(x) −→ 0 uniformly as |x| −→ ∞. Prove that u ≡ 0.

b) Find a nontrivial solution of

∆u+ u = 0 in R3 (1202)

such that u(x) −→ 0 as |x| −→ ∞.

Hint: Consider radial solutions.

Solution:

a) Let ε > 0 be given. Then choose R > 0 sufficiently large that |u| ≤ ε for |x| ≥ R, which is possibly

by our hypothesis. Now let δ > 0 and define

w := u+ δ
(
|x|2 − 2R2

)
. (1203)

Since w is continuous and B(0, R) is compact, w attains its supremum over B(0, R). If this occurs at

an interior point x ∈ B(0, R), then

0 ≥ ∆w(x) = ∆u(x) + 2nδ = q(x)u(x) + 2nδ = q(x)w(x) + 2nδ + q(x)
(
2R2 − |x|2

)︸ ︷︷ ︸
>0

, (1204)

which implies

q(x)w(x) ≤ −2nδ < 0 =⇒ w(x) < 0, (1205)

where the implication holds since q is nonnegative. Alternatively, if the supremum is obtained at

x ∈ ∂B(0, R), then

w(x) = u(x) + δ
(
|x|2 − 2R2

)
≤ ε+ δ

(
R2 − 2R2

)
= ε− δR2. (1206)

In either case, we see

max
B(0,R)

u− 2δR2 ≤ max
B(0,R)

u+ δ(|x|2 − 2R2) = max
B(0,R)

w ≤ max{0, ε− δR2}, (1207)
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and so

max
B(0,R)

u ≤ max{2δR2, ε+ δR2}. (1208)

Since δ was arbitrarily chosen, we may let δ −→ 0+ to deduce

max
B(0,R)

u ≤ ε. (1209)

Consequently, with our initial choice of R, we see

sup
Rn

u ≤ max{ sup
Rn−B(0,R)

u, sup
B(0,R)

u} ≤ max{ε, ε} = ε. (1210)

Since ε was arbitrary, we may let ε −→ 0+ to see u ≤ 0 in Rn. By an analogous argument with

inifmums and a choice of w with the sign of the second term flipped, we deduce u ≥ 0 in Rn, from

which the result follows.

b) Assume u is radial so that u(x) = v(r), where r = |x|. For each index i,

vxi = v′(r)rxi = v′(r) · xi
r

=⇒ vxixi = v′′(r) · x
2
i

r2
+ v′(r)

(
1

r
− x2

i

r3

)
, (1211)

which implies

∆v =

3∑
i=1

v′′(r) · x
2
i

r2
+ v′(r) ·

(
1

r
− x2

i

r3

)
= v′′(r) +

2v′(r)

r
. (1212)

Therefore,

0 = ∆u+ u = v′′ +
2v′

r
+ v, (1213)

and so

0 = rv′′ + 2v′ + rv = (rv′ − v)′ + 2v′ + rv = (rv′ + v)′ + rv = (rv)′′ + rv = w′′ + w, (1214)

where we take w := rv. Since the solution of the ODE for w is well-known to be of the form

w(r) = c1 cos(r) + c2 sin(r), (1215)
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we see

v(r) =
c1 cos(r)

r
+
c2 sin(r)

r
. (1216)

Since we want v to be defined for all r ∈ [0,∞), we take c1 = 0 and c2 = 1, noting sin(r)/r −→ 1 as

r −→ 0. Thus,

u(x) :=


sin(|x|)
|x| , if x 6= 0,

1 if x = 0,

(1217)

forms a nontrivial solution to the PDE a.e. in R3 that vanishes as |x| −→ ∞.

�
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S13.3a. Let D be a domain in Rn with smooth boundaries.44 Let u be a H1 solution of
−∆u+ u1/3 = 0 in D,

u = 0 on ∂D.

(1218)

Prove u ≡ 0 in D.

Solution:

Let ε > 0 be given. Since u ∈ H1
0 (D) and H1

0 (D) is the closure of all C∞c (D) functions in H1(D), there

exists v ∈ C∞c (D) ∩H1(D) such that

‖u− v‖H1(D) < ε. (1219)

Let us momentarily assume u ∈ C∞c (D). Then we see

∫
D
f (1220)

�

44We omit S13.3b since it appears to have been in error. See Peter and Zane’s notes on this.
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S13.5. Consider the autonomous ODE

ẏ1 = y2, ẏ2 = −y1 + (1− y2
1 − y2

2)y2. (1221)

Show that any solution x(t) = (x1(t), x2(t)) of the above system converges to (sin(t + c), cos(t + c)) as

t −→∞ for some constant c.

Solution:

The only fixed point of the system is at the origin. So, if x(0) is at the origin, then x(t) remains at the

origin for all time. Now assume x(0) is not the origin. We proceed by making the change of variables to a

variant of polar coordinates to write

x = (x1, x2) = (r sin θ, r cos θ). (1222)

Differentiating reveals

d

dt

[
r2
]

= 2rṙ = 2r · x1ẋ1 + x2ẋ2

r
= 2

(
x1(−x2) + x2

[
−x1 + (1− r2)x2

])
= 2(1− r2)x2

2, (1223)

and so

ṙ =
1− r2

r
· x2

2 = r(1− r2) cos2 θ. (1224)

Since r(0) > 0 and (1224) implies ṙ ≥ 0 for r ∈ (0, 1), we see r > 0 for all time. Then observe

r cos θ = x2 = ẋ1 = ṙ sin θ + rθ̇ cos θ =⇒ r(1− θ̇) cos θ = ṙ sin θ (1225)

Rearranging reveals

θ̇ = 1− (1− r2) sin θ cos θ = 1− 1− r2

2
· sin 2θ. (1226)

Define ϕ(t) := |r − 1|2 and note

ϕ̇ = 2(r − 1)ṙ = 2(r − 1)r(1− r2) sin2 θ = −2(1− r)2(1 + r)r sin2 θ = −2ϕ(1 + r)r sin2 θ ≤ 0. (1227)

And, ϕ ≥ 0. The monotone convergence theorem then asserts ϕ(t) converges to a limit ϕ? = |1 − r?|2.
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Consequently, ϕ̇ −→ 0, and so

0 = lim inf
t→∞

ϕ̇

= lim inf
t→∞

−2ϕ(1 + r) sin2 θ

= −2 · lim sup
t→∞

ϕ(1 + r) sin2 θ

= −2ϕ?(1 + r?) · lim sup
t→∞

sin2 θ.

(1228)

By way of contradiction, suppose the limit on the final line above is nonzero. This would require there to

exist k ∈ Z such that

lim
t→∞

θ = kπ, (1229)

which would then imply θ̇ −→ 0. However, if (1229) holds, then (1226) implies

lim
t→∞

θ̇ = lim
t→∞

1− 1− r2

2
· sin 2θ = 1− 0, (1230)

a contradiction. Therefore, the limit in the final line of (1228) must be positive, making the equation hold

precisely when

0 = ϕ? = |1− r?|2 ⇐⇒ r? = 1. (1231)

Thus, as t −→ ∞, we see r −→ 1 and θ̇ −→ 1, therey implying θ −→ c + t for some c ∈ R, from which the

result follows. �
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S13.6. Draw the phase space for the competing species system

ẋ = x(2− x− y), ẏ = y(3− 2x− y). (1232)

How likely is it that both species survive?

Solution:

First observe45 the equilibrium points are (0, 0), (0, 3), (2, 0), and (x̃, ỹ) such that

 1 1

2 1

 x̃

ỹ

 =

 2

3

 , (1233)

i.e., (x̃, ỹ) = (1, 1). The Jacobian for the system is given by

J(x, y) =

 ∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y

 =

 2− 2x− y −x

−2y 3− 2x− 2y

 . (1234)

This implies

J(0, 0) =

 2 0

0 3

 , (1235)

which has eigenvalues λ = 2, 3, and so (0, 0) forms an unstable node. Then note

J(0, 3) =

 −1 0

−6 −3

 , (1236)

which has eigenvalues λ = −1,−3, and so (0, 3) corresponds to a sink. Similarly,

J(2, 0) =

 −2 −2

0 −1

 , (1237)

45This problem is the example at the beginning of Section 6.4 (with the roles of x and y swapped) in Strogatz’s text
Nonlinear Dynamics and Chaos and it follows closely to Problems 6.4.1, 6.4.2, and 6.4.3.
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which has eigenvalues λ = −2,−1, and so (2, 0) corresponds to a sink. Lastly,46

J(1, 1) =

 (2− x̃− x̃)− ỹ −x̃

−2ỹ (3− 2x̃− ỹ)− ỹ

 =

 −ỹ −x̃

−2ỹ −ỹ

 =

 −1 −1

−2 −1

 , (1238)

which has the eigenvalues λ = −1 ±
√

2, and so (1, 1) is a saddle point. Along the null-clines x = 0 and

y = 2− x we have ẋ = 0, and along the null-clines y = 0 and y = 3− 2x we have ẏ = 0. With these facts,

we obtain the following phase plane diagram.

Figure 29: ODE phase plane for S13.6.

Based on this diagram and the fact that (1, 1) is a saddle point and the only equilibrium point as which

both species survive, the likelihood that both species survive is negligible. �

46We write this out in this odd way to shed long on situations where we may not know x̃ and ỹ explicitly, as occurs on some
of the more recent exams.
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S13.7. Let Ω be a connected, bounded domain in Rn with smooth boundary, and let f, g : Rn → R be

smooth. Show there is at most one smooth solution of the PDE
ut −∆u+ |∇u|2 = 0 in Ω× (0,∞),

u = g on ∂Ω× (0,∞),

u = f on Ω× {t = 0}.

(1239)

Solution:

Let u and v be two solutions to the PDE. Define w := u− v. It suffices to show w = 0 in Ω× [0,∞). Using

the definition of w, we see it satisfies
wt −∆w = |Dv|2 − |Du|2 in Ω× (0,∞),

w = 0 on ∂Ω× (0,∞),

w = 0 on Ω× {t = 0}.

(1240)

Fix T > 0 and define ΩT := Ω × (0, T ]. Let ΓT be the parabolic boundary of ΩT . Then fix δ > 0

and define w̃ = w + δet. This implies


w̃t −∆w̃ = |Dv|2 − |Du|2 + δet in ΩT ,

w̃ = δet on ΓT .

(1241)

Now let ε > 0. Because ΩT is compact and w̃ is smooth, w̃ attains its infimum and supremum over

ΩT . By way of contradiction, suppose

inf
ΩT

w̃ ≤ −ε. (1242)

Since

w̃ = δet ≥ δ > 0 > −ε on ΓT , (1243)

it follows that any minimizer (x, t) of w̃ over ΩT is in ΩT . Consequently, w̃t(x, t) ≤ 0 and, because x is a

local minimizer of w̃(·, t), we see ∆w̃(x, t) ≥ 0 and

0 = Dw̃(x, t) = Du(x, t)−Dv(x, t) =⇒ Du(x, t) = Dv(x, t). (1244)
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Thus, at (x, t),

0 ≥ w̃t −∆w = |Dv|2 − |Du|2︸ ︷︷ ︸
=0

+δet = δet > 0, (1245)

which implies 0 > 0, a contradiction. Therefore, the assumption that (1242) holds was false, i.e.,

inf
ΩT

w̃ > −ε (1246)

holds. Because this holds for arbitrary ε > 0, we may let ε −→ 0+ to deduce

w̃ ≥ 0 in ΩT . (1247)

This implies

w = w̃ − δet ≥ −δet ≥ −δeT in ΩT . (1248)

Similarly, because (1248) holds for arbitrary δ > 0, we may let δ −→ 0+ to find

w ≥ 0 in ΩT . (1249)

Since (1249) holds for arbitrary T > 0, we may let T −→∞ to discover

w ≥ 0 in Ω× [0,∞). (1250)

Because u and v were arbitrary, we may repeat an analogous argument with their roles swapped to deduce

w ≤ 0 in Ω× [0,∞). Whence w is identically zero and the result follows. �
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S13.8. Show that47

u(x, t) :=


−2

3

(
t+
√

3x+ t2
)

if 4x+ t2 > 0,

0 otherwise

(1251)

is an entropy solution of the equation ut + uux = 0.

Solution:

Let f(u) := 1
2u

2 so that the PDE may be expressed as the conservation law

ut + f(u)x = 0. (1252)

We proceed in the following manner. Let C be the curve in R × (0,∞) parameterized by (s(t), t) =

(−t2/4, t). We show u satisfies the PDE to the left and right of C. Then we must verify the Rankine-

Hugoniot (RH) condition holds along C and that the entropy conditions

f ′(u`) > ṡ(t) > f ′(ur) along C (1253)

hold.

To the left of C, i.e., where x < −t2/4, we have u = 0. In this region, it immediately follows that

ut + f(u)x = 0 + f(0) = 0. (1254)

To the right of C, we see

ut = −2

3

(
1 +

1

2
(3x+ t2)−1/2 · 2t

)
= −2

3

(
1 + t(3x+ t2)−1/2

)
, (1255)

and

ux = −2

3
· 1

2
·
(
3x+ t2

)−1/2 · 3 = −
(
3x+ t2

)−1/2
, (1256)

47This is Evans Problem 3.17.
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which implies

ut + f(u)x = −2

3

(
1 + t(3x+ t2)−1/2

)
+

2

3

(
t+ (3x+ t2)1/2

) (
3x+ t2

)−1/2

= −2

3

(
1 + t(3x+ t2)−1/2

)
+

2

3

(
t(3x+ t2)−1/2 + 1

)
= 0,

(1257)

as desired.

We now verify the RH condition holds. Since the limiting value of u from the right of C, denote ur, is

ur = lim
x→(−t2/4)+

u(x, t)

= lim
x→(−t2/4)+

−2

3

(
t+ (3x+ t2)1/2

)
= −2

3

(
t+

(
3

(
− t

2

4

)
+ t2

)1/2
)

= −2

3

(
t+

t

2

)
= −t,

(1258)

and the limiting value of u from the left is u` = 0, we see

f(u`)− f(ur)

u` − ur
=

1
2 · u

2
` −

1
2 · 0

2

u` − 0
=

1

2
u` = − t

2
= ṡ(t), (1259)

i.e., the RH condition holds. Lastly, the entropy conditions hold since

f ′(u`) = u` = 0 > − t
2

= ṡ(t) > −t = ur = f ′(ur). (1260)

This completes the proof. �

293 Last Modified: 4/26/2019



ADE Qual Notes Heaton

2012 Fall

F12.1. Show the PDE 
−∆u = −1 for |x| < 1, |y| < 1,

u = 0 for |x| = 1,

ux − uy = 0 for |y| = 1,

(1261)

has at most one solution48 in |x| < 1, |y| < 1.

Solution:

Define Ω := (−1, 1)× (1, 1), Γ1 := [−1, 1]× {−1, 1} and Γ2 := {−1, 1} ∪ (−1, 1). Then ∂Ω = Γ1 ∪ Γ2 and

Γ1∩Γ2 = ∅. Let u and v be two solutions to the PDE. Define w := u−v. It suffices to show w is identically

zero. Observe 
∆w = 0 in Ω,

w = 0 on Γ2,

wy = wx on Γ1.

(1262)

We first show w attains its supremum along the boundary ∂Ω. Let δ > 0 and set w̃ := w + δ|z|2,

where z = (x, y). Because w̃ is smooth and Ω is compact, w̃ attains it supremum over Ω. By way of

contradiction, suppose the supremum is obtained at a point z? ∈ Ω. Then

0 ≥ ∆w̃(z?) = ∆w(z?) + 2nδ = 2nδ > 0, (1263)

which implies 0 > 0, a contradiction. Thus,

sup
Ω

w̃ = sup
∂Ω

w̃. (1264)

Observe

sup
Ω

w ≤ sup
Ω

w + δ|z|2 = sup
Ω

w̃ = sup
∂Ω

w̃ = sup
∂Ω

w + δ|z|2 ≤ sup
∂Ω

w + δ
√

2. (1265)

Combined with the fact ∂Ω ⊆ Ω, we see

sup
∂Ω

w ≤ sup
Ω

w ≤ sup
∂Ω

w + δ
√

2. (1266)

48We presume a typo was made in the original prompt and have attempted to correct it.
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Because this holds for arbitrary δ > 0, we may let δ −→ 0+ to deduce

sup
∂Ω

w = sup
Ω

w. (1267)

Multiplying our PDE by w and integrating reveals

0 =

∫
Ω
w∆w dz = −

∫
Ω
|Dw|2 dz +

∫
∂Ω
w
∂w

∂n
dσ. (1268)

Then ∫
Γ1

w
∂w

∂n
dσ =

∫
Γ1

wwy dσ

=

∫
Γ1

wwx dσ

=

∫
Γ1

d

dx

[
w2

2

]
dσ

=

∫ 1

−1

d

dx

[
w2(x, 1)

2
+
w2(x,−1)

2

]
dx

=
w(1, 1)2 + w(1,−1)

2
− w(−1, 1)2 + w(−1,−1)2

2

= 0,

(1269)

where the final equality holds since w = 0 on Γ2. The fact w = 0 on Γ2 also implies

∫
Γ2

w
∂w

∂n
dσ. = 0 (1270)

Thus, compiling our results reveals

∫
Ω
|Dw|2 dz =

∫
∂Ω
w
∂w

∂n
dσ =

∫
Γ1

w
∂w

∂n
dσ +

∫
Γ2

w
∂w

∂n
dσ = 0. (1271)

Hence Dw = 0 in Ω. Together with the fact Ω is connected, this implies w is constant in Ω. And,

because w = 0 on Γ2, it follows that w = 0 in Ω. This completes the proof. �
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F12.2. Consider the equation

ρt −∆(ρ2)−∇ · (2xρ) = 0 in R2 × [0,∞), (1272)

where the initial data ρ0(x) ≥ 0 is compactly supported and
∫
ρ0 = 1. Let us assume ρ(·, t) stays

nonnegative and compactly supported for all times t > 0. Using formal calculations, show the following.

a)
∫
ρ(·, t) dx = 1 for all t > 0.

b) The energy ∫
ρ2 + ρ|x|2 + Cρ dx (1273)

decreases in time for any C.

c) Using a) and b), show that ρ converges to (C0 − |x|2/2)+ for an appropriate C0.

Solution:

a) Define e : R→ R by

e(t) :=

∫
R2

ρ(x, t) dx. (1274)

We are given that e(0) = 0. Then observe for t ∈ (0,∞)

ė(t) =
d

dt

∫
R2

ρ(x, t) dx

=

∫
R2

ρt dx

=

∫
R2

∆(ρ2) +∇ · (2xρ) dx

=

∫
R2

(2ρ∆ρ+ 2|Dρ|2) +∇ · (2xρ) dx

=

∫
R2

(−2|Dρ|2 + 2|Dρ|2) + (2nρ+ 2x ·Dρ) dx

=

∫
R2

0 + (2nρ− 2nρ) dx

= 0.

(1275)

The second equality holds by hypothesis, the fourth through integration by parts and the fact ρ
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has compact support, and the fifth through integration by parts on the last term.

b) Define f : R→ R by

f(t) :=

∫
R2

ρ(x, t)2 + ρ(x, t)|x|2 + Cρ(x, t) dx =

∫
R2

ρ2 + ρ|x|2 dx+ Ce(t). (1276)

Then

ḟ(t) =

∫
R2

∂t
(
ρ2 + ρ|x|2

)
dx+ Cė(t)

=

∫
R2

ρt
(
2ρ+ |x|2

)
dx

=

∫
R2

(
∆(ρ2) +∇ · (2xρ)

) (
2ρ+ |x|2

)
dx

=

∫
R2

∇ · (2ρ∇ρ+ 2xρ))
(
2ρ+ |x|2

)
dx

= −
∫
R2

2ρ(∇ρ+ x) · (2∇ρ+ 2x) dx

= −4

∫
R2

ρ|Dρ+ x|2 dx

≤ 0.

(1277)

The third line holds by the PDE ρ solves and the fifth line from integration by parts and the fact ρ

has compact support. Since ḟ(t) ≤ 0, we conclude f is nonincreasing in time.

c) Note f(t) ≥ 0 for all t ∈ (0,∞) since we assume ρ ≥ 0. Since f is monotonically decreasing and is

bounded below as t increases, it follows from the monotone convergence theorem that limt→∞ f(t)

exists. Consequently,

0 = lim
t→∞

ḟ(t) = −4 lim
t→∞

∫
R2

ρ|Dρ+ x|2 dx. (1278)

This implies either ρ approaches the zero function or |Dρ+x| approaches the zero function. However,

the fact e(t) = 1 for all t ∈ [0,∞) implies ρ cannot go to zero everywhere. Let ρ∞ denote the limit of

ρ. Whence, wherever ρ∞ 6= 0,

lim
t→∞
|Dρ+ x| = 0 =⇒ Dρ∞ = lim

t→∞
Dρ = −x =⇒ ρ∞ = lim

t→∞
ρ = C − |x|

2

2
. (1279)

Because we assume ρ is nonnegative (which follows from the nonnegativity of ρ for all times), it follows
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that

ρ∞ =

(
C − |x|

2

2

)
+

, (1280)

where C is yet to be determined. Observe

1 =

∫
R2

ρ∞ dx =

∫
B(0,
√

2C)
C − |x|

2

2
dx

=

∫ √2C

0

∫ 2π

0

(
C − r2

2

)
rdφdr

= π

∫ √2C

0
2Cr − r3 dr

= π

[
Cr2 − r4

4

]√2C

0

= π

[
2C2 − 4C2

4

]
= πC2.

(1281)

This implies C = 1/
√
π and

ρ∞ =

(
1√
π
− |x|

2

2

)
+

. (1282)

�
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F12.3. Consider the ODE

u′′ + f(u) + λu′ = 0 (1283)

for u ∈ C2(R), f ∈ C∞(R), and λ > 0. Prove no periodic solutions exist other than a stationary

equilibrium solution.

Solution:

We first rewrite the ODE as a system via

u̇ = y, ẏ = −f(u)− λy, (1284)

where the argument is taken to be time t. For notational convenience, let z := (u, y). Dulac’s Criterion

asserts no closed orbits exist provided there exists a real-valued function g(z) such that ∇ · (gż) is single-

signed everywhere. Then observe, for each smooth function g : R2 → R,

∇ · (gż) = Dg · ż + g(∇ · ż) = Dg · ż − λg. (1285)

If g is a constant function, e.g., g(z) = 1, then we see

∇ · (gż) = Dg · ż − λg = 0− λ < 0. (1286)

Dulac’s Criterion thus asserts no closed orbits exist. This implies the only periodic solutions are fixed

points, which are of the form (u, 0), where f(u) = 0. At such a point, we see u̇ = 0, and so the only

periodic solutions to the original ODE are constant solutions satisfying f(u) = 0. �

Remark: This problem is something that may be derived from Section 7.2 of Strogatz’s Nonlinear Dy-

namics and Chaos. There the author also comments that candidates for g that usually work are g = 1,

g = 1/(xayb), g = eax, and g = eay. 4
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F12.4. We say that u is a weak solution of the wave equation
utt − uxx = 0 in R× (0,∞),

u = f on R× {t = 0},

ut = g on R× {t = 0},

(1287)

if for all v ∈ C∞0 (R× [0,∞)), u satisfies

∫ ∞
0

∫
R

u[vtt − vxx] dxdt+

∫
R

f(x)vt(x, 0) dx−
∫
R

g(x)v(x, 0) dx = 0. (1288)

Let f(x) be a piecewise continuous function with a jump at x = x0. Show that u(x, t) = f(x+ t) is a weak

solution of the wave equation.

Solution:

We assume g is the weak derivative of f . Then note

∫ ∞
0

∫ ∞
−∞

uvtt dxdt =

∫ ∞
−∞

∫ ∞
0

f(x+ t)vtt dtdx

=

∫ x0

−∞

∫ ∞
0

f(x+ t)vtt dtdx+

∫ ∞
x0

∫ ∞
0

f(x+ t)vtt dxdt

=

∫ x0

−∞

[∫ x0−x

0

f(x+ t)vtt dt+

∫ ∞
x0−x

f(x+ t)vtt dt

]
dx+

∫ ∞
x0

∫ ∞
0

f(x+ t)vtt dtdx.

(1289)

Integrating by parts reveals

∫ x0−x

0
f(x+ t)vtt dt = f(x−0 )vt(x, x0 − x)− f(x)vt(x, 0)−

∫ x0−x

0
g(x+ t)vt dt, (1290)

and ∫ ∞
x0−x

f(x+ t)vtt dt =
[

lim
t→∞

f(x+ t)vt

]
︸ ︷︷ ︸

=0

−f(x+
0 )vt(x, x0 − x)−

∫ ∞
x0−x

g(x+ t)vt dt, (1291)

and ∫ ∞
0

f(x+ t)vtt dt =
[

lim
t→∞

f(x+ t)vt(x, t)
]

︸ ︷︷ ︸
=0

−f(x)vt(x, 0)−
∫ ∞

0
g(x+ t)vtt dt, (1292)
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where we have utilized the compact support of v when evaluating the limits. Combining our results,

∫ ∞
0

∫ ∞
−∞

uvtt dxdt =

∫ x0

−∞

[
f(x−0 )vt(x, x0 − x)− f(x)vt(x, 0)−

∫ x0−x

0

g(x+ t)vt dt

]
dx

+

∫ x0

−∞

[
−f(x+

0 )vt(x, x0 − x)−
∫ ∞
x0−x

g(x+ t)vtdt

]
dx

+

∫ ∞
x0

[
−f(x)vt(x, 0)−

∫ ∞
0

g(x+ t)vtt dt

]
dx

=
[
f(x−0 )− f(x+

0 )
] ∫ x0

−∞
vt(x, x0 − x) dx−

∫ ∞
−∞

f(x)vt(x, 0) dx−
∫ ∞
−∞

∫ ∞
0

g(x+ t)vt dtdx.

(1293)

In similar fashion to above, observe

∫ ∞
0

∫ ∞
−∞

uvxx dxdt =

∫ ∞
0

(∫ x0−t

−∞
f(x+ t)vxx dx+

∫ ∞
x0−t

f(x+ t)vxx dx

)
dt

=

∫ ∞
0

[
f(x−0 )vx(x0 − t, t)−

∫ x0−t

−∞
g(x+ t)vx dx

]
dt

+

∫ ∞
0

[
−f(x+

0 )vx(x0 − t, t)−
∫ ∞
x0−t

g(x+ t)vx dx

]
dt

=
[
f(x−0 )− f(x+

0 )
] ∫ ∞

0
vx(x0 − t, t) dt−

∫ ∞
0

∫ ∞
−∞

g(x+ t)vx dxdt,

(1294)

where

∫ x0−t

−∞
f(x+ t)vxx dx = f(x−0 )vx(x0 − t, t)−

[
lim

x→−∞
f(x+ t)vx(x, t)

]
︸ ︷︷ ︸

=0

−
∫ x0−t

−∞
g(x+ t)vx dx, (1295)

and

∫ ∞
x0−t

f(x+ t)vxx dx =
[

lim
x→∞

f(x+ t)vx(x, t)
]

︸ ︷︷ ︸
=0

−f(x+
0 )vx(x0 − t, t)−

∫ ∞
x0−t

g(x+ t)vx dx. (1296)
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Due to the compact support of v, repeated integration by parts and a change of variables x = x0− t reveals∫ x0

−∞
vt(x, x0 − x) dx = [xvt(x, x0 − x)]x0

x=−∞︸ ︷︷ ︸
=0

−
∫ x0

−∞
xvxt(x, x0 − x) dx

=

∫ ∞
0

(x0 − t)vxt(x0 − t, t) dt

= −
∫ ∞

0
tvxt(x0 − t, t) dt

=

∫ ∞
0

vx(x0 − t, t) dt− [t · vx(x0 − t, t)]∞t=0︸ ︷︷ ︸
=0

=

∫ ∞
0

vx(x0 − t, t) dt.

(1297)

Therefore, (1293), (1294), and (1297) together imply

∫ ∞
0

∫ ∞
−∞

u(vtt − vxx) dxdt = −
∫ ∞
−∞

f(x)vt(x, 0) dx−
∫ ∞

0

∫ ∞
−∞

g(x+ t)(vt − vx) dxdt. (1298)

Since∫ ∞
−∞

∫ ∞
0

g(x+ t)vt dtdx =

∫ ∞
0

∫ ∞
−∞

g(x+ t)vt dxdt

=

∫ ∞
0

[f(x+ t)vt]x=−∞∞︸ ︷︷ ︸
=0

−
∫ ∞
−∞

f(x+ t)vtx dx

dt

= −
∫ ∞

0

∫ ∞
−∞

f(x+ t)vtx dxdt

= −
∫ ∞
−∞

[ lim
t→∞

f(x+ t)vx(x, t)
]

︸ ︷︷ ︸
=0

−f(x)vx(x, 0)−
∫ ∞

0
g(x+ t)vx dt

dx

=

∫ ∞
−∞

f(x+ t)vx(x, 0) dx+

∫ ∞
0

∫ ∞
−∞

g(x+ t)vx dxdt

= −
∫ ∞
−∞

g(x+ t)v(x, 0) dx+ [f(x+ t)v(x, 0)]x=−∞∞︸ ︷︷ ︸
=0

+

∫ ∞
0

∫ ∞
−∞

g(x+ t)vx dxdt,

(1299)
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we see ∫ ∞
0

∫ ∞
−∞

g(x+ t)(vt − vx) dxdt =

∫ ∞
−∞

g(x+ t)v(x, 0) dx. (1300)

Together (1298) and (1300) yield the desired result. �
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F12.8. Give the entropy satisfying weak solution to Burgers’ equation


ut + uux = 0 in R× (0,∞),

u = u0 on R× {t = 0},
(1301)

on the periodic domain [0, 4] with initial data

u0(x) =


2 if x ∈ (0, 2),

0 if x ∈ (2, 4).

(1302)

Show the slope of the solution is 1/t almost everywhere for t > 2.

Solution:

We proceed by using the method of characteristics. Let F (p, q, z, x, t) = q + zp. Taking p = ux, q = ut,

and z = u yields F = 0 and gives rise to the system of characteristic ODE
ẋ(s) = Fp = z, x(0) = x0,

ṫ(s) = Fq = 1, t(0) = 0,

ż(s) = Fpp+ Fqq = zp+ q = 0, z(0) = u0(x0).

(1303)

This implies t = s and z is constant along characteristics. Thus,

x(t) = x0 +

∫ t

0
ẋ(τ) dτ = x0 +

∫ t

0
z(τ) dτ = x0 + tz(0) =


x0 + 2t if x0 ∈ (0, 2),

x0 if x0 ∈ (2, 4).

(1304)

The characteristics collide immediately as (2, 0). Applying the Rankine-Huogoniot (RH) condition along

the shock curve, parameterized by (x̃(t), t), reveals

˙̃x(t) =
f(u`)− f(ur)

u` − ur
=

1
2 · 2

2 − 1
2 · 0

2

2− 0
= 1, (1305)

where f(u) := u2

2 is determined from our PDE, writing it as a conservation law ut + f(u)x = 0. Combined

with the fact x̃(0) = 2, we deduce

x̃(t) = t+ 2, for all t ∈ [0, 2], (1306)
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with the restriction on the domain since x̃(2) = 4, beyond which requires further analysis. We claim, in

(0, 4)× (0, 2),

u(x, t) =


x/t if 0 < x < 2t,

2 if 2t < x < x̃(t),

0 if x̃(t) < x < 4,

(1307)

where the rarefaction wave g(x/t) = x/t satisfies our PDE since

0 = ut + uux = g′ · − x
t2

+ gg′ · 1

t
=
g′

t

[
g − x

t

]
= 0, for 0 < x < 2t. (1308)

Note (1307) implies |ux| ≤ 1/t a.e. in (0, 4) × (0, 2). So, let (x, t) ∈ (0, 4) × (0, 2) and z > 0 such that

(x+ 2) ∈ (0, 4). Then the mean value theorem asserts there exists ξz ∈ (0, z) such that

u(x+ z, t)− u(x, t)

z − 0
= ux(ξz, t) ≤

1

t
=⇒ u(x+ z, t)− u(x, t) ≤ z

t
, (1309)

with the above equations holding a.e., and so u satisfies the entropy condition for t ∈ (0, 2). Whence the

choice of u in (1307) gives the unique entropy satisfying weak solution. For t > 2, the shock curve satisfies

s(2) = 2 and

ṡ(t) =
f(u`)− f(ur)

u` − ur
=

1
2

(x
t

)2
− 1

2

(
x− 4

t

)2

x
t −

x−4
t

=
x− 2

t
. (1310)

Using x = s(t) and the initial condition yields the shock curve s(t) for t > 2. Note the periodicity of u

implies these results are repeated periodically. For these latter times t > 2, for each curve sk(t) satisfying

the appropriate RH condition (analogous to above) with sk(2) = 4(k + 1) and k ∈ Z, immediately to the

left of the curve we have u(x, t) = (x−4k)/t and to the right of the curve we have u(x, t) = (x−4(k+1))/t.

And, like above, such choice of u satisfies the entropy condition. Consequently, differentiating (except along

the shock curves, which are of measure zero) u yields ux = 1/t a.e. in R× (2,∞), as desired. �
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2012 Spring

S12.2.

a) Consider the Cauchy problem for the wave equation


utt − uxx = f in R× (0,∞),

u = ut = 0 on R× {t = 0},
(1311)

where f(x, t) is smooth and f(x, t) = 0 for t < 0. Find an explicit solution of this Cauchy pro-

blem.

b) (Return and complete.)

Solution:

a) We proceed by applying Duhamel’s principle. For each s ∈ [0,∞), let ũ(x, t; s) be the solution to


ũtt − ũxx = 0 in R× (s,∞),

ũt = f(·, s) on R× {t = s},

ũ = 0 on R× {t = s}.

(1312)

Then D’Alembert’s formula yields

ũ(x, t; s) =

∫ x+(t−s)

x−(t−s)
f(z, s) dz. (1313)

and Duhamel’s principle states

u(x, t) =

∫ t

0
ũ(x, t; s) ds. (1314)

Therefore,

u(x, t) =

∫ t

0

∫ x+(t−s)

x−(t−s)
f(z, s) dzds. (1315)

�
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S12.4. Consider the Hemholtz equation in R3

∆u(x) + k2u(x) = 0, k > 0. (1316)

a) Check that E(x) = eik|x|/4π|x| is a fundamental solution.

b) Prove the Green’s formula

u(x0) =

∫
∂B(0,R)

(
∂u

∂ν
(y)E(x0 − y)− u∂E

∂ν
(x0 − y)

)
ds(y), (1317)

where x0 ∈ R3 is arbitrary, R > |x0|, B(0, R) is the ball of radius R centered at 0, and ν is the

outward normal to B(0, R).

c) Use b) to prove that if (∆ + k2)u = 0 in R3 and if u(x) = O(1/r) and if ur − iku = o(1/r), where

r = |x|, then u(x) = 0.

Solution:

a) Let f ∈ C2
c (R3) and L be the operator defined by L := ∆ + k2. We must show if u is defined by

u(x) :=

∫
R3

E(y)f(x− y) dy, (1318)

then

Lu = −f in R3. (1319)

(Show integral can be brought inside.) Since E blows up at the origin, we must proceed delicately in

our integration there. Fix ε > 0. Then observe

Lu(x) =

∫
B(0,ε)

E(y)Lf(x− y) dy︸ ︷︷ ︸
Iε

+

∫
R3−B(0,ε)

E(y)Lf(x− y) dy︸ ︷︷ ︸
Jε

= Iε + Jε, (1320)

where Iε and Jε are the underbraced quantities. Since

|Lf(x− y)| =
∣∣∆xf(x− y) + k2f(x− y)

∣∣
≤ ‖D2f‖L∞(B(x,ε)) + k2‖f‖L∞(B(x,ε)) for all y ∈ B(0, ε)

(1321)
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Consequently, Lf ∈ L∞(B(x, ε)). This implies

|Iε| ≤ ‖Lf‖B(x,ε)

∫
B(0,ε)

|E(y)| dy

= ‖Lf‖B(x,ε)

∫
B(0,ε)

1

4π|x|
dx

= ‖Lf‖B(x,ε)

∫ ε

0

1

r
r2 dr

= ‖Lf‖B(x,ε)
ε2

2
,

(1322)

where we have employed the use of spherical coordinates. Thus, by the squeeze lemma, we see

limε→0+ Iε = 0. Using integration by parts,

Jε =

∫
R3−B(0,ε)

E(y)
[
∆yf(x− y) + k2f(x− y)

]
dy

=

∫
R3−B(0,ε)

−DyE(y) ·Dyf(x− y) + k2E(y)f(x− y) dy +

∫
∂B(0,ε)

E(y)
∂f

∂ν
(x− y) dσ(y).

(1323)

However, for y 6= 0, we claim (∆y + k2)E(y) = 0. Thus integrating by parts once more reveals

Jε =

∫
R3−B(0,ε)

(∆y + k2)E(y)f(x− y) dy +

∫
∂B(0,ε)

E(y)
∂f

∂ν
(x− y)− ∂E

∂ν
(y)f(x− y) dσ(y)

=

∫
∂B(0,ε)

E(y)
∂f

∂ν
(x− y)− ∂E

∂ν
(y)f(x− y) dσ(y)

= Lε −Mε,

(1324)

where Lε and Mε are the integrals for the first and second terms in the second line. By (??), we

know

∂E

∂ν
=
eik|x|

4π

(
ik

|x|2
− 2

|x|3

)
x · − x

|x|
=
eik|x|

4π

(
2

|x|2
− ik

|x|

)
=
eikε

4π

(
1

ε2
− ik

ε

)
along ∂(R3 −B(0, ε)), (1325)
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noting ν = −x/|x|. So,

lim
ε→0+

Mε = lim
ε→0+

∫
∂B(0,ε)

∂E

∂ν
(y)f(x− y) dσ(y)

= lim
ε→0+

(
−
∫
∂B(0,ε)

f(x− y) dy − ikε−
∫
∂B(0,ε)

f(x− y) dy

)
= f(x)− ik0 · f(x)

= f(x).

(1326)

Additionally,

|Lε| ≤ ‖Df‖L∞(B(x,ε))

∫
∂B(0,ε)

1

4π|y|
dy = ‖Df‖L∞(B(x,ε))

∫ ε

0

1

r
· r2 dr = ‖Df‖L∞(B(x,ε)) ·

ε2

2
.

(1327)

Again by the squeeze lemma, we see limε→0+ Lε = 0. Compiling our results, we see

Lu(x) = lim
ε→0+

Iε + Jε = lim
ε→0+

Iε + Lε −Mε = 0 + 0− f(x), (1328)

as desired.

All that remains is to verify our claim.

∂xiE(x) =

(
ik

4π|x|2
− 1

4π|x|−3

)
xie

ik|x| for all i ∈ {1, 2, . . . , n}. (1329)

Differentiating once more reveals

∂xixiE(x) =

(
−2ikxi
|x|3

+
3xi

4π|x|−4

)
xie

ik|x| +

(
ik

4π|x|2
− 1

4π|x|−3

)(
1 +

ikxi
|x|

)
eik|x|

=

(
ik

|x|2

)
eik|x|

(1330)

�
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S12.6. Consider Burgers’ equation


ut + (u2/2)x = 0 in R× (0,∞),

u = u0 on R× {t = 0}.
(1331)

a) Derive the classical/strong solution with initial data u0(x) = x2. This will only be defined for some

x and t, which you should specify.

b) Show where the magnitude of the derivative of the strong solution becomes infinite.

c) Consider the entropy satisfying weak solution arising from the piecewise smooth initial data

u0(x) =


1/4 if x < −1/2 or x > 1/2,

x2 if −1/2 < x < 1/2.

(1332)

Specify when and where the first entropy satisfying shock will appear. Write the ODE that describes

the trajectory of the shock (you do not need to solve the ODE).

Solution:

a) We proceed by using the method of characteristics. Let F (p, q, z, x, t) = q + zp. Taking p = ux,

q = ut, and z = u yields F = 0 and gives rise to the ODE system
ẋ(s) = Fp = z, x(0) = x0,

ṫ(s) = Fq = 1, t(0) = 0,

ż(s) = Fpp+ Fqq = zp+ q = 0, z(0) = u0(x0).

(1333)

This implies t = s and z is constant along characteristics. Thus,

x(t) = x0 +

∫ t

0
ẋ(τ) dτ = x0 +

∫ t

0
z(τ) dτ = x0 + tu0(x0) = x0 + tx2

0. (1334)

Using the quadratic formula yields

x0 =
−1±

√
1 + 4xt

2t
. (1335)
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We take the expression with the “+” since

lim
t→0+

−1±
√

1 + 4xt

2t
= lim

t→0+
±

1
2(1 + 4xt)−1/2 · 4x

2
= ±x, (1336)

and we require x −→ x0 as t −→ 0+. Note also x0 = x0(x, t) is well-defined in R × (0,∞) when

x ≥ −1/4t. Whence the strong solution u is given by

u(x, t) = z(t) = u0(x0) =

(
−1 +

√
1 + 4xt

2t

)2

, for (x, t) ∈ R× (0,∞) with x ≥ −1/4t. (1337)

b) Differentiating u reveals

ux(x, t) = 2

(
−1 +

√
1 + 4xt

2t

)(
1

2t
· 1

2
· (1 + 4xt)−1/2 · 4t

)
=

1

t

(
− 1√

1 + 4xt
+ 1

)
. (1338)

Consequently, we see |ux| −→ +∞ as x approaches −1/4t from the right.

c) By our system of characteristic ODE in (1333), with the initial data swapped, we see

x(t) = x0 +

∫ t

0
ẋ(τ) dτ = x0 + tu0(x0) =


x0 + t

4 , if x0 < −1
2 or x0 >

1
2 ,

x0 + tx2
0, if −1

2 < x0 <
1
2 .

(1339)

This shows the characteristics are linear in t. Just to the left of (1/2, 0) we see the characteristics

have slope ẋ(t) = x2
0 < 1/4 while just to the right the characteristics have slop ẋ(t) = 1/4. So,

the characteristics do not cross there. Similarly, the characteristics do not crash at (−1/2, 0). All

that remains is to investigate the characteristics originating in the interval (−1/2, 1/2). Let a, b ∈

(−1/2, 1/2) and suppose characteristics originating at these points collide at (x̃, t̃). Then

a+ t̃a2 = x̃ = b+ t̃b2 =⇒ t̃ =
a− b
b2 − a2

= − 1

a+ b
=⇒ x̃ = a− a2

a+ b
=

ab

a+ b
. (1340)

Letting b −→ a we see

x̃ = lim
b→a

ab

a+ b
=
a

2
and t̃ = lim

b→a
− 1

a+ b
= − 1

2a
, (1341)
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which implies

t̃ = − 1

4x̃
=⇒ 1 + 4x̃t̃ = 0. (1342)

The previous two results show that only characteristics originating in (−1/2, 0) will crash (since

otherwise t̃ ≤ 0) and that characteristics originating in (−1/2, 0) will crash along the curve 1+4xt = 0.

Since x(t) is increasing in time along characteristics, to find the first time at which the characteristics

crash, it suffices to find the most negative starting point such characteristics. The limiting point is at

(x0, 0) = (−1/2, 0), and so

1 + 4tx = 0 and x− t

4
= x0 = −1

2
=⇒ t = 1 and x = −1

4
. (1343)

Therefore, the shock curve first occurs at (−1/4, 1). The shock curve, parameterized as (s(t), t),

satisfies s(1) = −1/4 and the Rankine-Hugoniot condition

ṡ(t) = σ =

u2
`

2 −
u2
r

2

u` − ur
, (1344)

where u` and ur are the limiting values of u approaching the shock curve from the left and right, i.e.,

u` =
1

4
and ur =

(
−1 +

√
1 + 4xt

2t

)2

. (1345)

Note this is, indeed, the entropy satisfying solution since u` > ur and f ′′(u) = 2 > 0, which implies

the entropy condition f ′(u`) > σ > f ′(ur) holds.

�
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2011 Fall

F11.1. Let a, b ∈ R2 and consider a smooth function U : (R2 − {a, b})→ R, which satisfies

lim sup
|q|→∞

|U(q)| = 1. (1346)

Let us consider a system of ODEs for (p(t), q(t)) ∈ R2 × (R2 − {a, b}):


ṗ(t) = ∇U(q(t)),

q̇(t) = p(t),

(1347)

with initial data p(0) ∈ R2 and q(0) ∈ R2 − {a, b}.

a) Show that if T ∈ (0,∞) and if p(t) and q(t) are defined on [0, T ), then

sup
t∈[0,T )

|p(t)|, |q(t)| <∞. (1348)

b) Let [0, T ) be the maximal interval of existence for p(t) and q(t) with T <∞. Show that the limit of

q(t) exists as t −→ T and, moreover,

lim
t→T

q(t) = a or b. (1349)

Solution:

a) Set f(x) := x2/2. Then observe

f(p(t))− f(p(0)) =

∫ t

0

d

dt
[f(p(τ))] dτ

=

∫ t

0
p(τ) · ṗ(τ) dτ

=

∫ t

0
q̇(t) · ∇U(q(τ)) dτ= U(q(t))− U(q(0)),

(1350)

where the final equality holds by the fundamental theorem of line integrals. This implies

|p(t)| =
(
|p(0)|2 + 2 [U(q(t))− U(q(0))]

)1/2
. (1351)

313 Last Modified: 4/26/2019



ADE Qual Notes Heaton

We claim U is bounded by some M > 0, and so

sup
t∈[0,T )

|p(t)| = sup
t∈[0,T )

(
|p(0)|2 + 2 [U(q(t))− U(q(0))]

)1/2
≤ sup

t∈[0,T )

(
|p(0)|2 + 2M

)1/2
=
(
|p(0)|2 + 2M

)1/2
<∞.

(1352)

Now let us verify that U is bounded. Let δ > 0. By our hypothesis, there exists r > 0 such

that

|U(q)| ≤ 1 + δ, whenever |q| ≥ r. (1353)

Since U is smooth... I just realized U might not be bounded due to the hole... It could be like

U = 1/|q|....

b) (Incomplete.)

�
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F11.2. Let v : Rn → R
n be a C1 vector field. Let θ : Rn × [0,∞)→ R be a smooth function solving the

PDE

θt = ∆
(
θ2
)

+∇ · (vθ), (1354)

where θ(x, 0) is bounded from above and below.

a) Show that θ stays bounded, both from above and below, for all times t ≥ 0 if ∇ · v = 0 for all times.

b) Now suppose |∇ · v| ≤M for all x ∈ Rn. If θ(x, 0) ≤ 1, show that θ(x, t) ≤ eMt for all t > 0.

Solution:

a) Let B be an upper bound for |θ(·, 0)| so that |θ(x, 0)| ≤ B for all x ∈ R. Fix R > 0 and T > 0

and set ΩT := B(0, R) × (0, T ]. Let ΓT be the parabolic boundary of ΩT . Fix ε > 0 and define

u = θ − B − εet. Because ΩT is compact and u is smooth, the supremum of u over ΩT is obtained.

By way of contradiction, suppose this supremum is nonnegative. Combined with the fact

u(x?, 0) = θ(x?, 0)−B︸ ︷︷ ︸
≤0

−ε ≤ −ε < 0, (1355)

the continuity of u implies there exists (x?, t?) ∈ ΩT such that u(x?, t?) = 0. Let t? be the first time at

which this occurs, and note t? > 0 by (1355). This implies, because t? is the first time, ut(x
?, t?) ≥ 0

and, since x? is a local maximizer of u(·, t?), ∆u(x?, t?) ≤ 0. At the local maximizer we also have

Du = Dθ = 0. Whence, at (x?, t?),

0 ≤ ut = θt − εet

= ∆(θ2) +∇ · (vθ)− εet

= 2θ∆θ + 2|Dθ|2 + v ·Dθ − εet

= 2(B + εet)︸ ︷︷ ︸
≥0

∆u︸︷︷︸
≤0

+2 · 02 + v · 0− εet

≤ −εet

< 0,

(1356)

a contradiction. Note the derivatives are well-defined everywhere in ΩT − (B(0, R) × {t = 0}) since
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our original PDE is defined over Rn × (0,∞). Our contradiction shows

sup
ΩT

u ≤ 0 =⇒ θ ≤ B + εet ≤ B + εeT in ΩT . (1357)

Since this holds for arbitrary ε > 0, we may let ε −→ 0+ to deduce

θ ≤ B in ΩT . (1358)

Because this result holds for arbitrary T > 0 and R > 0, we may let T −→∞ to write

θ ≤ B in B(0, R)× [0,∞), (1359)

and then let R −→∞ to write

θ ≤ B in Rn × [0,∞), (1360)

from which we deduce θ is bounded above. An analogous argument can be applied by instead using

the definition u := −θ − B − εet to deduce −θ ≤ B in Rn × [0,∞). Together, these results prove θ

remains bounded by B over Rn for all time.

b) This problem is similar to that of a). Fix R > 0 and T > 0 and ε > 0 and define v := θ−eMt−εe2Mt.

Set ΩT := B(0, R)× (0, T ]. Because ΩT is compact and v is smooth, v attains its supremum over ΩT .

By way of contradiction, suppose this supremum is nonnegative. Combined with the fact

v(x, 0) = θ(x, 0)− eM0 − εe2M0 ≤ 1− 1− ε = −ε < 0, (1361)

the continuity of v implies there exists (x̃, t̃) ∈ ΩT such that v(x̃, t̃) = 0, and t̃ > 0 by (1361). Let t̃

be the first time at which this occurs so that vt(x̃, t̃) ≥ 0. And, since x̃ is a local maximizer of v(·, t̃),
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we see Dv(x̃, t̃) = Dθ(x̃, t̃) = 0 and ∆v(x̃, t̃) = ∆v(x̃, t̃) ≤ 0. Consequently, at (x̃, t̃),

0 ≤ vt = θt −MeMt − 2Mεe2Mt

= 2θ∆θ + 2|Dθ|2 + v ·Dθ + (∇ · v)θ −MeMt − 2Mεe2Mt

= 2
(
eMt + εe2Mt

)︸ ︷︷ ︸
≥0

∆θ︸︷︷︸
≤0

+2 · 02 + v · 0 + (∇ · v)
(
eMt + εe2Mt

)
−MeMt − 2Mεe2Mt

≤M
(
eMt + εe2Mt

)
−MeMt − 2Mεe2Mt

= −Mεe2Mt

< 0,

(1362)

a contradiction. Therefore,

sup
ΩT

v ≤ 0 =⇒ θ ≤ eMt + εe2Mt in ΩT . (1363)

Because this holds for arbitrary ε > 0, we may send ε −→ 0+ to deduce

θ ≤ eMt in ΩT . (1364)

As done in a), we may then send T −→∞ followed by sending R −→∞ to deduce

θ ≤ eMt in Rn × [0,∞), (1365)

as desired.

�
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F11.5. Consider the initial value problem


ut + f(u)x = 0 in R× (0,∞),

u = φ on R× {t = 0}.
(1366)

Assume f is smooth and uniformly convex, i.e., f ′′ ≥ θ > 0 for some θ > 0.

a) Show that if φ(x) = −x, then there is a point at which |ux| → ∞ in finite time.

b) Consider the Riemann initial data

φ(x) =


u− if x < 0,

u+ if x > 0.

(1367)

Compute the entropy solution and show that the entropy condition is satisfied. Consider both cases:

u− > u+ and u− < u+.

Solution:

a) We proceed by using the method of characteristics. Let F (p, q, z, x, t) = q + f ′(z)p. Taking p = ux,

q = ut, and z = u yields F = 0 and gives rise to the system of characteristic ODE



ṗ(s) = −Fx − Fzp = −f ′′(z)p2, p(0) = −1,

q̇(s) = −Ft − Fzq = −f ′′(z)pq, q(0) = −f ′(z(0))p(0),

ẋ(s) = Fp = f ′(z), x(0) = x0,

ṫ(s) = Fq = 1, t(0) = 0,

ż(s) = Fpp+ Fqq = f ′(z)p+ q = 0, z(0) = −x0.

(1368)

This implies t = s and z is constant along characteristics. Additionally, ṗ = −f ′′(z)p2 ≤ −θp2 < 0,

and so p(t) ≤ p(0) = −1 for all times t ∈ (0,∞). Using separation of variables reveals

∫ p(t)

p(0)

dp̃

p̃2
=

∫ t

0
−f ′′(z(τ)) dτ =⇒ −1− 1

p(t)
=

1

p(0)
− 1

p(t)
= −f ′′(−x0)t. (1369)
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Rearranging reveals, for sufficiently small t,

p(t) = − 1

1− f ′′(−x0)t
≤ − 1

1− θt
=⇒ |p(t)| ≥ 1

1− θt
. (1370)

Therefore,

lim
t→(1/θ)−

|p(t)| ≥ lim
t→(1/θ)−

1

1− θt
= +∞, (1371)

from which we conclude |ux| = |p| −→ +∞ by the time t = 1/θ.

b) We may proceed using (1368), with the exception that z(0) = φ(x0) for different initial data. Inte-

grating reveals

x(t) = x0 +

∫ t

0
ẋ(τ) dτ = x0 +

∫ t

0
f ′(z(τ)) dτ = x0 + tf ′(φ(x0)). (1372)

We now split the result into two cases:

Case 1: u− > u+.

Since f is strictly convex, f ′(u−) > f ′(u`). Consequently, (1372) implies the characteristics crash

immediately at the origin. Thus, the shock curve, parameterized by (s(t), t) satisfies s(0) = 0 and the

Rankine-Hugoniot (RH) condition

ṡ(t) =
f(u−)− f(u+)

u− − u+︸ ︷︷ ︸
:=σ

= σ, (1373)

where σ is set to be the underbraced quantity. Thus s(t) = σt and

u(x, t) =


u− if x < s(t) = σt,

u+ if x > s(t) = σt.

(1374)

We must also verify the entropy condition is satisfied. The fact that u− > u+ implies u(·, t) is

nonincreasing for each t, and so

u(x+ z, t)− u(x, t) ≤ 0 ≤ z

t
, for all (x, t) ∈ R× (0,∞), z ∈ (0,∞), (1375)
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and so the entropy condition holds. Since entropy solutions are unique (up to a set of measure zero)

when f is smooth and convex, we conclude (1374) gives the unique entropy solution.

Case 2: u− < u+.

We claim

u(x, t) =


u− if x < tf ′(u−),

g(x/t) if f ′(u−) < x/t < f ′(u+),

u+ if x > tf ′(u+),

(1376)

where g := (f ′)−1, which is well-defined since f ′ is strictly increasing. Of course, in the regions where

u is constant, the PDE is satisfied. In the remaining region, observe that if u(x, t) = v(x/t) for some

function v, then

0 = ut+f ′(u)ux = v′ ·− x
t2

+f ′(v) ·v′ · 1
t

=
v′

t

[
f ′(v)− x

t

]
=⇒ v = (f ′)−1

(x
t

)
= g

(x
t

)
, (1377)

assuming v′ never vanishes, which is indeed the case for v = g since the fact f ′′ ≥ θ > 0 implies

v′ = g′ =
(
(f ′)−1

)′
=

1

(f ′)′
=

1

f ′′
> 0. (1378)

Hence g(x/t) solves the conservation law. Note also

x

t
= f ′(u−) =⇒ u− = g

(x
t

)
and

x

t
= f ′(u+) =⇒ u+ = g

(x
t

)
. (1379)

Together with the continuity of g, this implies u, as defined in (1376), is continuous. All that remains

is to verify the entropy condition. Following (1378), we see

0 < g′ =
1

f ′′
≤ 1

θ
, (1380)

i.e., g′ is positive and bounded above. Fix any (x, t) ∈ (0,∞). Note u is differentiable a.e. (i.e.,

in R − {tf ′(u−), tf ′(u+)}). Thus, by the mean value theorem, for each z > 0 with (x + z) ∈
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R− {tf ′(u−), tf ′(u+)}, there exists ξz ∈ (0, z) such that

u(x+ z, t)− u(x, t)

z − 0
= ux(ξz, t). (1381)

Since

ux(x, t) =


0 if x < tf ′(u−) or x > tf ′(u+),

g′(x/t) · 1
t if f ′(u−) < x/t < f ′(u+),

(1382)

we therefore deduce

u(x+ z, t)− u(x, t)

z − 0
≤ ux(ξz, t) ≤ g′

(
ξz
t

)
· 1

t
≤ 1

θ
· 1

t
=⇒ u(x+ z, t)− u(x, t) ≤ 1

θ
· z
t
. (1383)

This shows that for a.e. x, z ∈ R and t, z > 0,

u(x+ z, t)− u(x, t) ≤ 1

θ
· z
t
, (1384)

from which we conclude u satisfies the entropy condition. This completes the proof.

�

Remark: In the solution above, one could potentially replace the entropy condition verification in Case 1

with the following variation:
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By the mean value theorem, there exists ũ ∈ (u+, u−) such that

f ′(ũ) =
f(u−)− f(u+)

u− − u+
= σ. (1385)

By the strict convexity of f , it then follows that

f ′(u−) < f ′(ũ) = σ < f ′(u+), (1386)

and so the entropy condition holds.

4
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Fll.6. Consider the initial value problem
utt + 2uxt − 3uxx = 0 in R× (0,∞),

u = φ on R× {t = 0},

ut = ψ on R× {t = 0}.

(1387)

a) Use energy methods to prove the value of the solution u at the point (x0, t0) depends at most on the

values of the initial data in the interval (x0 − 3t0, x0 + t0).

b) Use energy methods to prove uniqueness of solutions if the initial data has compact support.

Solution:

a) First note this PDE can be “factored” as

(∂t + 3∂x)(∂t − ∂x)u = 0 in R× (0,∞). (1388)

Let (x0, t0) ∈ R × (0,∞) and assume u = ut = 0 on (x0 − 3t0, x0 + t0) × {t = 0}. We shall prove

this implies u(x0, t0) = 0, from which it follows that, at most, u depends on the initial data in the

specified interval. The “factored” form of the PDE reveals there will be waves traveling to the left

with speed three and to the right with speed unity. Consequently, let us define the energy

e(t) :=
1

2

∫
S(t)

u2
t + 3u2

x dx, (1389)

where, for each t ∈ [0, t0),

S(t) := (x0 − 3(t0 − t), x0 + (t0 − t)). (1390)

By our assumption on the initial data,

e(0) =
1

2

∫
S(0)

ψ2 + 3φ2︸ ︷︷ ︸
=0

dx = 0. (1391)
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Differentiating in time reveals

ė(t) =

∫
S(t)

ututt + 3uxuxt dx+

∫
∂S(t)

1

2

(
u2
t + 3u2

x

)
v · n dσ

=

∫
S(t)

ut (utt − 3uxt) dx+

∫
∂S(t)

3ut
∂u

∂n
+

1

2
(u2
t + 3u2

x)v · n dσ

=

∫
S(t)
−2utuxt dx+

∫
∂S(t)

3ut
∂u

∂n
+

1

2
(u2
t + 3u2

x)v · n dσ,

(1392)

where v is the Eulerian velocity of the boundary and n is the outward normal along ∂S(t). Note

∫
S(t)

−2utuxt dx =

∫
S(t)

2utuxt dx−
∫
∂S(t)

2u2
tn dσ =⇒

∫
S(t)

−2utuxt dx =

∫
∂S(t)

−u2
tn dσ. (1393)

Therefore,

ė(t) =

∫
∂S(t)

−u2
tn+ 3ut

∂u

∂n
+

1

2
(u2
t + 3u2

x)v · n dσ

=

[
−u2

t + 3utux +
1

2
(u2
t + 3u2

x) · (−1)

]
x=x0+(t0−t)

+

[
u2
t − 3utux +

1

2
(u2
t + 3u2

x) · (−3)

]
x=x0−3(t−t0)

=

[
−3

2
(ut + ux)2

]
x=x0+(t0−t)

+

[
−1

2
(ut + 3ux)2

]
x=x0+3(t0−t)

≤ 0.

(1394)

This implies e(t) is nonincreasing. Since the integrand in (1389) is nonnegative, it follows that

e(t) ≥ 0, and so 0 ≤ e(t) ≤ e(0) = 0. Thus e(0) = 0 for all t ∈ [0, t0), which implies ut = ux = 0 in

S(t) for each t ∈ [0, t0), i.e., u is constant therein. Combined with the fact u = 0 on S(0)× {t = 0},

we deduce u = 0 in in S(t) for each t ∈ [0, t0). In particular, with the continuity of u, this reveals

u(x0, t0) = lim
t→t−0

u(x0, t) = lim
t→t−0

0 = 0, (1395)

as desired. The result then follows.

b) Given that φ and ψ are compactly supported, we claim u is compactly supported for all times. Let

t ∈ (0,∞). Let r > 0 be sufficiently large that spt(u(·, 0)) ⊆ B(0, r). Now let x ∈ R−B(0, r+3t+1).

Then, by the choice of r, it follows that u = 0 in (x−3t, x+t) ⊆ B(x, 3t). By our work in a), u(x, t) = 0.

324 Last Modified: 4/26/2019



ADE Qual Notes Heaton

Since x was arbitrarily chosen in R − B(0, r + 3t + 1), it follows that spt(u(·, t)) ⊆ B(0, r + 3t + 1),

i.e., u(·, t) is compactly supported. Thus, our claim follows.

Now let u and v be two solutions to the given PDE and set w := u− v. Then
wtt + 2wxt − 3wxx = 0 in R× (0,∞),

w = 0 on R× {t = 0},

wt = 0 on R× {t = 0}.

(1396)

So, it suffices to show w = 0 in R× (0,∞). Define the energy

E(t) :=
1

2

∫
R

w2
t + 3w2

x dx, (1397)

and note this is well-defined for all time due to the compact support of w (which follows from the

compact support of u and v). Then (1396) implies E(0) = 0. And, differentiating in time reveals

Ė(t) =

∫
R

wtwtt + 3wxwxt dx

=

∫
R

wt(wtt − 3wxx) dx

=

∫
R

wt · (−2wxt) dx

= −2

∫
R

wtwxt dx

= 2

∫
R

wxtwt dx

= −Ė(t).

(1398)

The first equality holds by using integrating by parts, noting the boundary terms vanish. The fifth

equality holds again via integration by parts, and the final equality holds since Ė(t) equals the quan-

tity on the fifth line. This implies Ė(t) = 0, and so E(t) = E(0) = 0 for all t ∈ (0,∞). Consequently,

wx = wt = 0 in R × (0,∞), which reveals w is constant. Because w = 0 on R × {t = 0}, we then

conclude w = 0 in R× (0,∞).

�
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2011 Spring

S11.1. The equation of motion for a “nonlinear spring” is ÿ = −ky − ay3, where k > 0 is the constant in

Hooke’s Law. Rewrite this equation as an equivalent first order system, and analyze the phase plane for

it. Indicate the differences between a hard (a > 0) and a soft (a < 0) spring. Also explain what differences

you would see if a damping term were added to the equation.

Solution:

Observe this second-order ODE may be rewritten as

 ẋ

ẏ

 =

 −ky − ay3

x

 , (1399)

where we set x := ẏ. This system is Hamiltonian since

∂xẋ+ ∂yẏ = ∂x(−ky − ay3) + ∂y(x) = 0. (1400)

This implies every equilibrium point is either a center or a saddle. If a ≥ 0, then the only equilibrium

point is (0, 0). If a < 0, then (0, 0) and (±
√
−k/a, 0) are the equilibrium points. The Jacobian matrix for

the ODE system is

J(x, y) =

 ∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y

 =

 0 −k − 3ay2

1 0

 . (1401)

Consequently,

J(0, 0) =

 0 −k

1 0

 , (1402)

which has eigenvalues λ = ±i
√
k, and so (0, 0) is a center. In the case that a < 0, we see

J

(
±
√
−k
a
, 0

)
=

 0 2k

1 0

 , (1403)

which has eigenvalues λ = ±
√

2k, and so (±
√
−k/a, 0) form saddle points.

Now suppose a damping term is added so that ÿ = −ky − ay3 + bẏ for some scalar b ∈ R. Then the
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associated ODE system becomes

 ẋ

ẏ

 =

 −ky − ay3 + bx

x

 . (1404)

The equilibrium points are the same as in the undamped case. However, the Jacobian becomes

J(x, y) =

 b −k − 3ay2

1 0

 . (1405)

So, the eigenvalues of J(0, 0) satisfy

0 = λ(λ− b) + k = λ2 − bλ+ k =⇒ λ =
b±
√
b2 − 4k

2
. (1406)

If b2 − 4k ≥ 0, then (0, 0) is an improper node (stable if b < 0 and unstable if b > 0). If b2 − 4k < 0, then

(0, 0) is a spiral (stable if b < 0 and unstable if b > 0). Additionally,

J

(
±
√
−k
a
, 0

)
=

 b 2k

1 0

 , (1407)

which has eigenvalues

λ =
b±
√
b2 + 8k

2
, (1408)

and so
(
±
√
−k/a, 0

)
form saddle points, as before. �
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S11.3 Let D be a bounded domain in Rd with smooth boundary Γ, and assume that a(x) is a continuous

function on D. Show that solutions to ut = ∆u−a(x)u vanishing on Γ with u(x, 0) ≥ 0 will be nonnegative

for all t > 0.

Solution:

Let u be a solution to the given PDE so that
ut −∆u+ au = 0 in D × (0,∞),

u = 0 on ∂D × (0,∞),

u ≥ 0 on D × {t = 0}.

(1409)

We must show u ≥ 0 in D × (0,∞). Since a ∈ C(D) and D is closed and bounded, D is compact and

a(D) is compact. Thus a is bounded in D by some B > 0. Choose λ > B and let w(x, t) := u(x, t)e−λt.

Then note the facts e−λt > 0 and u satisfies (1409) together imply w = 0 on ∂D × (0,∞) and w ≥ 0 on

D × {t = 0}. Furthermore,

wt −∆w = (ut − λu−∆u)e−λt = (−a− λ)w in D × (0,∞). (1410)

We proceed using a “first time” argument. Let ε > 0 and, by way of contradiction, suppose there is a

point in D × (0,∞) at which w = −ε. Let (x0, t0) ∈ D × (0,∞) be such a point with t0 > 0 the smallest

time at which this condition w = −ε occurs. This implies wt(x0, t0) ≤ 0. The function w(·, t0) has a local

minimum at x0 and so ∆w(x0, t0) ≥ 0. Consequently,

0 ≥ wt(x0, t0)−∆w(x0, t0) = (−a(x0)− λ)︸ ︷︷ ︸
<0

w(x0, t0)︸ ︷︷ ︸
=−ε

> 0, (1411)

a contradiction. Note −a(x0)− λ < 0 since λ > supD |a|. This contradiction shows w ≥ −ε in D× (0,∞).

Letting ε −→ 0+, we deduce w ≥ 0 in D × (0,∞). Since w(x, t) = e−λtu(x, t) and e−λt > 0, we conclude

u ≥ 0 in D × (0,∞) also. �
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S11.4. Consider the Cauchy problem in the plane


uxux + uxuy = 1 in R×R,

u = f on R× {y = 0},
(1412)

where f ∈ C2(R). When will this be characteristic at (x0, 0)? Assuming that it is not characteris-

tic at (x0, 0), find a solution defined in a neighborhood of that point. The soultion will be expressed

in terms of f and the function r(x, y) defined near (x0, 0) by y = (f ′(r))2(x − r − y). Show also that

y = (f ′(r))2(x− r − y) has a unique local solution with r(x0, 0) = x0.

Solution:

We proceed using the method of characteristics. Set F (p, q, z, x, y) = p2 + pq − 1. Taking p = ux, q = uy,

and z = u yields F = 0 and gives rise to the ODE system

ṗ(s) = −Fx − Fzp = 0, p(0) = f ′(x0),

q̇(s) = −Fy − Fzq = 0, q(0) =
1− p(0)2

p(0)
= 1

f ′(x0) − f
′(x0),

ẋ(s) = Fp = 2p+ q, x(0) = x0,

ẏ(s) = Fq = p, y(0) = 0,

ż(s) = Fpp+ Fqq = p(2p+ q) + pq = 2, z(0) = f(x0).

(1413)

We see this is characteristic49 when f ′(x0) = 0 as q(0) is undefined in this case. Now suppose f ′(x0) 6= 0.

This implies

p(s) = f ′(x0) and q(s) =
1

f ′(x0)
− f ′(x0), (1414)

and so

x(s)− x0 =

∫ s

0
2p(τ) + q(τ) dτ = s

(
1

f ′(x0)
+ f ′(x0)

)
. (1415)

Similarly,

y(s)− 0 =

∫ s

0
p(τ) dτ = sf ′(x0). (1416)

Combining the previous two results reveals

x− x0 − y = x− x0 − sf ′(x0) =
s

f ′(x0)
=⇒ f ′(x0)2(x− x0 − y) = sf ′(x0) = y. (1417)

49I don’t actually know what this means. But, this is my best guess made by inferring from the context...
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We claim there exists a neighborhood N ⊂ R2 of (x0, 0) and a function r : N → R such that

r(x0, 0) = x0 and y = f ′(r)2(x− r − y), for all (x, y) ∈ N . (1418)

This shows that, in a neighborhood of (x0, 0), the function r(x, y) gives the starting point of the characte-

ristic passing through (x, y). From our ODE system and previous results,

z(s)− z(0) =

∫ s

0
2 dτ = 2s =⇒ z(s) = z(0) +

2sf ′(x0)

f ′(x0)
= f(x0) +

2y

f ′(x0)
. (1419)

Thus,

u(x, y) = f(r(x, y)) +
2y

f ′(r(x, y))
in N . (1420)

All that remains is to verify the existence of the claimed function r(x, y). Define G(x, y, r) via

G(x, y, r) := y − f ′(r)2(x− r − y), (1421)

and so

Gr(x, y, r) = 0− 2f ′(r)f ′′(r)(x− r − y) + f ′(r)2. (1422)

Then

G(x0, 0, x0) = 0− f ′(x0)(x0 − x0 − 0) = 0 (1423)

and

Gr(x0, 0, x0) = 0− 2f ′(x0)f ′′(x0)(x0 − x0 − 0) + f ′(x0)2 = f ′(x0)2 6= 0. (1424)

Therefore, the implicit function theorem asserts there exists a function r(x, y) defined in a neighborhood

N of (x0, 0) such that G(x, y, r(x, y)) = 0 for all (x, y) ∈ N and r(x0, 0) = x0. With the definition of G in

(1421), we see (1418) holds, and the proof is complete. �
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2010 Fall

F10.2.

a) Solve  u

v


t

=

 1 4

4 1

 u

x


x

, (1425)

with the initial data (u(x, 0), v(x, 0)) = (f(x), g(x)).

b) Find all boundary conditions of the form au(0, t) + bv(0, t) = 0 which make the initial value problem

in a) well-posed in x ≥ 0, t ≥ 0.

Solution:

a) Let y = (u, v) and A be the matrix in the differential equation so that yt = Aux. Since A is real and

symmetric, it is diagonalizable. Observe

0 = det(A− λId) = (1− λ)2 − 16 = (λ− 5)(λ+ 3). (1426)

Thus the eigenvalues are λ1 = −3 and λ2 = 5. Then observe

0 = (A− λ1Id)v1 =

 4 4

4 4

 v1 =⇒ v1 =

 1

−1

 , (1427)

and

0 = (A− λ2Id)v2 =

 −4 4

4 −4

 v2 =⇒ v2 =

 1

1

 . (1428)

Thus,

A =

 1 1

1 −1


︸ ︷︷ ︸

=:P

 5 0

0 −3


︸ ︷︷ ︸

=:D

 1 1

1 −1

−1

= PDP−1, (1429)

and

(P |Id) =

 1 1 1 0

1 −1 0 1

 ∼
 1 1 1 0

0 1 1/2 −1/2

 ∼
 1 0 1/2 1/2

0 1 1/2 −1/2

 = (Id|P−1).

(1430)
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So, our PDe may be rewritten as

yt = Ayx = PDP−1yx =⇒ P−1yt = DP−1yx. (1431)

Taking w = P−1y, we see

wt = Dwx =⇒


(w1)t − 5(w1)x = 0,

(w2)t + 3(w2)x = 0.

(1432)

Define F (p, q, z, x, t) = q − 5p. Taking q = (w1)t, p = (w1)x, and z = w, yields F = 0. And the

method of characteristics gives rise to the ODE system
ẋ(s) = Fp = −5, x(0) = x0,

ṫ(s) = Fq = 1, t(0) = 0,

ż(s) = Fpp+ Fqq = −5p+ q = 0, z(0) = w1(x0, 0).

(1433)

This implies t = s, z is constant along characteristics, and

x− x0 =

∫ t

0
ẋ(τ) dτ = −5t =⇒ x0 = x+ 5t. (1434)

Thus,

w1(x, t) = z(t) = z(0) = w1(x0, 0) = w1(x+ 5t, 0). (1435)

Likewise,

w2(x, t) = w2(x− 3t, 0). (1436)

Since

w(x, 0) = P−1y(x, 0) =
1

2

 1 1

1 −1

 f(x)

g(x)

 =

 1
2(f(x) + g(x))

1
2(f(x)− g(x))

 , (1437)

we deduce

w(x, t) =
1

2

 f(x+ 5t) + g(x+ 5t)

f(x− 3t)− g(x− 3t)

 . (1438)
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From this, we conclude

y(x, t) = Pw(x, t) =
1

2

 1 1

1 −1

 f(x+ 5t) + g(x+ 5t)

f(x− 3t)− g(x− 3t)

 . (1439)

b) By our work in a), the PDE in (1425) is well-posed if and only if the PDE in (1432) is well-posed.

And, from (1438) and our boundary condition,

0 = au(0, t) + bv(0, t)

=
1

2
[a (f(5t) + g(5t) + f(−3t)− g(−3t)) + b (f(5t) + g(5t)− f(−3t) + g(−3t))]

=
1

2
[(a+ b) (f(5t) + g(5t)) + (a− b) (f(−3t)− g(−3t))]

=
1

2
[(a+ b)w1(0, t) + (a− b)w2(0, t)] .

(1440)

This implies

w2(0, t) = −a+ b

a− b
w1(0, t) = −a+ b

a− b
· (f(5t) + g(5t))

2
. (1441)

From our work in a), we know the characteristics of w2 are of the form x− 3t = C. Since w2 is also

constant along characteristics, it follows that

w2(x, t) = − a+ b

2(a− b)

(
f

(
−5

3
(x− 3t)

)
+ g

(
−5

3
(x− 3t)

))
for t > 3x. (1442)

Additionally, by (1438),

w2(x, t) =
1

2
(f(x− 3t)− g(x− 3t)) for t < 3x. (1443)

Well-posedness of our PDE therefore comes down to checking that the boundary conditions along the

t and x axes align. Namely, the PDE is well-posed provided

− a+ b

2(a− b)
(f(0) + g(0)) = lim

t→0+
w2(0, t) = lim

x→0+
w2(x, 0) =

f(0)− g(0)

2
. (1444)
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Equivalently, well-posedness occurs when

a+ b

a− b
=
g(0)− f(0)

g(0) + f(0)
⇐⇒ 0 = af(0) + bg(0). (1445)

We conclude the PDE is well-posed when 0 = af(0) + bg(0).

�
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F10.3. Consider the competition with limited resources model

ẋ = (a1 − b1x− cyy)x, ẏ = (a2 − b2x− c2y)y, (1446)

where ai, bi, and ci are positive constant with c1a2 > a1c2 and b2a1 > b1a2. Note this implies that

c1b2 > c2b1.

a) Find the equilibria of this system in the closed quarter plane x ≥ 0, y ≥ 0.

b) Show that an equilibrium in the open quarter plane x > 0, y > 0 must be a saddle.

c) Make a plausible plane diagram for trajectories in the closed quarter plane.

Solution:

a) The equilibria are at (0, 0), (0, a2/c2), (a1/b1, 0), and (x, y), where

 b1 c1

b2 c2

 x

y

 =

 a1

a2

 . (1447)

Thus  x

y

 =

 b1 c1

b2 c2

−1 a1

a2


=

1

b1c2 − b2c1

 c2 −c1

−b2 b1

 a1

a2


=

1

b1c2 − b2c1

 a1c2 − a2c1

a2b1 − a1b2

 .

(1448)

b) The point (x, y) is in the open quarter plane, due to our hypotheses regarding the constants ai, bi,

and ci. The Jacobian for the system is given by

J(x, y) =

 ∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y

 =

 a1 − 2b1x− c1y −c1x

−b2y a2 − b2x− 2c2y

 . (1449)
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Using the relation in (1447), we see

J(x, y) =

 (a1 − b1x− c1y)− b1x −c1x

−b2y (a2 − b2x− c2y)− c2y

 =

 −b1x −c1x

−b2y −c2y

 . (1450)

To verify (x, y) is a saddle point, it suffices to verify J(x, y) has a positive real and a negative real

eigenvalue. Each eigenvalue λ satisfies

0 = det(λId− J(x, y)) = (λ+ b1x)(λ+ c2y)− c1b2xy = λ2 + (b1x+ c2y)λ+ xy (b1c2 − b2c1) , (1451)

and so

λ =
−(b1x+ c2y)±

√
(b1x+ c2y)2 − 4xy(b1c2 − b2c1)

2
. (1452)

Since x > 0, y > 0, and b1c2 < b2c1,

− 4xy(b1c2 − b2c1) > 0, (1453)

from which we deduce

√
(b1x+ c2y)2 − 4xy(b1c2 − b2c1) > |b1x+ c2y| . (1454)

Therefore, (1452) and (1454) together imply J(x, y) has a positive real and a negative real eigenvalue.

Whence (x, y) is a saddle point.

c) Omitted.

�
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F10.4. Use the method of characteristics to find a solution to
ut + uux = −x in R× [0,∞),

u = f on R× {t = 0}.
(1455)

You will not be able to find u(x, t) explicitly. However, if f ′(x) ≥ 0, show that the solution will exist

for t ∈ [0, π/2).

Solution:

We proceed using the method of characteristics. Define F (p, q, z, x, t) = q + zp + x. Then taking q = ut,

p = ux, and z = u yields F = 0 and gives rise to the ODE system
ẋ(s) = Fp = z, x(0) = x0,

ṫ(s) = Fq = 1, t(0) = 0,

ż(s) = Fpp+ Fqq = zp+ q = −x, z(0) = f(x0).

(1456)

This implies t = s and

x(s) + ẍ(s) = x(s) + ż(s) = x(s)− x(s) = 0, (1457)

Likewise, z(s) + z̈(s) = 0. Thus,

z = c1 sin(t) + c2 cos(t) and x = c3 sin(t) + c4 cos(t), (1458)

for some scalars c1, c2, c3, c4 ∈ R. Note

f(x0) = z(0) = c1 sin(0) + c2 cos(0) = c2 and − x0 = ż(0) = c1 cos(0) + c2 sin(0) = c1. (1459)

Similarly,

x0 = x(0) = c3 sin(0) + c4 cos(0) = c4 and f(x0) = z(0) = ẋ(0) = c3 cos(0) + c4 sin(0) = c3. (1460)

Therefore,

u(x, t) = f(x0) cos(t)− x0 sin(t), (1461)

337 Last Modified: 4/26/2019



ADE Qual Notes Heaton

where x0 satisfies

x = f(x0) sin(t) + x0 cos(t). (1462)

All that remains is to verify the solution exists for t ∈ [0, π/2). It suffices to show the characteristics cannot

cross for t ∈ [0, π/2). We are given that the solution exists at t = 0. By way of contradiction, suppose

there exists distinct y1, y2 ∈ R such that the characteristics originating from these points cross at some

time t ∈ (0, π/2). Then

f(y1) sin(t) + y1 cos(t) = f(y2) sin(t) + y2 cos(t) =⇒ f(y2)− f(y1) =

(
−cos(t)

sin(t)

)
(y2 − y1) . (1463)

By the mean value theorem, there exists y? between y1 and y2 such that

f(y2)− f(y1) = f ′(y?) (y2 − y1) . (1464)

The previous two results imply there exists y? ∈ R such that

f ′(y?) =
f(y2)− f(y1)

y2 − y1
= −cos(t)

sin(t)
< 0, (1465)

where the final inequality holds since t ∈ (0, π/2). This contradicts the fact f ′ ≥ 0 everywhere. Whence

the initial assumption was false and we conclude the characteristics do not cross for t ∈ [0, π/2). �
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F10.7. Consider the heat equation
ut −∆u = 0 in D × (0,∞),

u = 0 on D × {t = 0},

u = f on ∂D × (0,∞).

(1466)

Find an expansion for the solution to the problem in terms of eigenfunctions of ∆ and the solution of

the Dirichlet problem ∆w = 0 in D and w = f on ∂D. What is the leading term in the asymptotic

expansion of u(x, t)− w(x) as t −→∞?

Solution:

Define v := u− w so that 
vt −∆v = 0 in D × (0,∞),

v = −w on D × {t = 0},

v = 0 on ∂D × (0,∞).

(1467)

We proceed using separation of variables. To this end, assume v(x, t) = F (x)G(t) for some functions

F and G. Plugging this into our PDE yields

F (x)G′(t)−∆F (x)G(t) = 0 =⇒ G′(t)

G(t)
=

∆F (x)

F (x)
. (1468)

Since the left and right hand sides of the final equality are independent of each other, each side equals −µ,

where µ ∈ R is a constant. Consequently,


−∆F = µF in D,

F = 0 on ∂D.

(1469)

Since the Laplacian operator is symmetric elliptic, there exists an orthogonal basis of eigenfunctions

{ϕn}n∈N with associated eigenvalues {λn}n∈N. Moreover, for each n ∈ N

0 ≤
∫
D
|∇ϕn|2 dx = −

∫
D
ϕn∆ϕn dx+

∫
∂D

ϕn
∂ϕn
∂ν

dσ = λn

∫
D
ϕ2
n dx. (1470)

If λn = 0, then (1470) implies ∇ϕn = 0 in D, i.e., ϕn is constant, which is not possible since ϕn = 0 on

∂D and the zero function is not an eigenfunction. Whence λn > 0 for each n ∈ N as the integral on the
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right hand side of (1470) is positive and λn 6= 0.

The above result regarding the Laplacian operator implies there exists a collection of functions {gn}n∈N

such that

g′n(t) = −λng(t), for all n ∈ N, (1471)

where we are supposing, by the superposition principle, our solution is of the form

v(x, t) =
∑
n∈N

gn(t)ϕn(x). (1472)

Expanding −w in terms of the eigenfunctions yields

− w(x) =
∑
n∈N

αnϕn(x), where αn =
〈−w,ϕn〉
〈ϕn, ϕn〉

(1473)

and 〈·, ·〉 is the L2 scalar product on D. Thus, for each n ∈ N,


g′n = −λngn in (0,∞),

gn = αn on {t = 0}
=⇒ gn(t) = αne

−λnt. (1474)

Compiling our results, we write

v(x, t) =
∑
n∈N

αnϕn(x)e−λnt, (1475)

from which we deduce

u(x, t) = w(x) +
∑
n∈N

αnϕn(x)e−λnt. (1476)

Since λn > 0 for each n ∈ N, each term of v(x, t) vanishes as t −→ ∞. So, there is no leading term in the

asymptotic expansion of v(x, t) as t −→∞. �
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F10.8. Let u(x, t) be the solution to

utt + a2(x, t)ut −∆u = 0 in D × (0,∞),

u = 0 on ∂D × [0,∞))

u = f on D × {t = 0},

ut = g on D × {t = 0}.

(1477)

Prove that
∫
D u

2 dx is bounded for t ∈ [0,∞). You may assume that D is a bounded domain with

smooth boundary, f and g are smooth functions vanishing on ∂D, and that a is a smooth function on

D × [0,∞).

Solution:

Define the energy E : [0,∞)→ R via

E(t) :=

∫
D
‖∇u(x, t)‖2 + u2

t (x, t) dx. (1478)

Since f and g are smooth and D is bounded,

E(0) =

∫
D
‖∇f‖2 + g2 dx ≤

∫
D
‖∇‖2L2∞(D) + ‖g‖2L∞(D) dx = |D|

[
‖∇‖2L2∞(D) + ‖g‖2L∞(D)

]
<∞, (1479)

i.e., E(0) is bounded. Differentiating in time reveals

Ė =
d

dt

[∫
D
‖∇u‖2 + u2

t dx

]
= 2

∫
D
∇u · ∇ut + ututt dx

= 2

∫
D
ut (−∆u+ utt) dx+

∫
∂D

ut
∂u

∂ν
dσ

= 2

∫
D
ut
(
−a2ut

)
dx

= −2

∫
D

(aut)
2 dx

≤ 0,

(1480)

where the boundary term vanishes since u = 0 on ∂D × [0,∞), whereby ut = 0 on ∂D × [0,∞). Since
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the integrand in the definition of E is nonnegative, we therefore know 0 ≤ E(t) ≤ E(0) for all t ∈ [0,∞).

Furthermore, by Poincaré’s inequality, there exists C > 0, dependent only on D, such that

‖u‖L2(D) ≤ C‖∇u‖L2(D). (1481)

Therefore,

‖u‖2L2(D) ≤ C
2‖∇u‖2L2(D) ≤ C

2

∫
D
‖∇u‖2 + u2

t dx = C2E(t) ≤ C2E(0) <∞, (1482)

i.e., ‖u‖2L2(D) is bounded for all t ∈ [0,∞). �
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2010 Spring

S10.1. Consider the generalize eigenvalue problem


y′′ − y = −λx2y′ in (0, 1),

y = 0 on ∂(0, 1).

(1483)

Show that all eigenvalues −λ must be bigger than 1.

Solution:

Let u be an eigenfunction of the given ODE with eigenvalue −λ. This implies

∫ 1

0
u2 dx > 0. (1484)

Furthermore,

∫ 1

0
−λx2y′y dx =

∫ 1

0
y′′y − y2 dx = −

∫ 1

0
(y′)2 + y2 dx+

[
y′y
]1
x=0

= −
∫ 1

0
(y′)2 + y2 dx, (1485)

and integrating by parts reveals

−
∫ 1

0
x2y′y dx =

∫ 1

0
y · d

dx

[
x2y
]

dx−
[
y(x2y)

]1
x=0

=

∫ 1

0
2xy2 + x2y′y dx, (1486)

which implies

−
∫ 1

0
x2y′y dx =

∫ 1

0
xy2 dx. (1487)

Combining (1485) and (1487) reveals

−λ =

∫ 1
0 (y′)2 + y2 dx

−
∫ 1

0 x
2y′y dx

=

∫ 1
0 (y′)2 + y2 dx∫ 1

0 xy
2 dx

≥
∫ 1

0 (y′)2 + y2 dx∫ 1
0 y

2 dx
= 1 +

∫ 1
0 (y′)2 dx∫ 1

0 y
2 dx

> 1. (1488)

The division is well-defined due to (1484). The inequality holds since y′ is not identically zero, which

follow from (1484) and the fact y = 0 on the boundary. This completes the proof. �
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S10.2. Let Ω ⊂ Rn be a bounded domain with smooth boundary. Let u be a C2 solution of the following

problem 
ut −∆u+ u = 0 in Ω× (0,∞),

u = g on Ω× {t = 0},

u = 0 on ∂Ω× (0,∞).

(1489)

Suppose g is bounded and compactly supported in Ω. Using an appropriate energy, show there exists

C > 0 such that |u(x, t)| ≤ C exp(−t) as t −→∞.

Solution:

Let u be a C2 solution to the given PDE. We obtain the result by using the “Lp trick.” For each p > 2,

let ‖ · ‖p be the associated Lp(Ω) norm. Since Ω is bounded with smooth boundary, it has finite measure.

This implies for each t ∈ [0,∞)

lim
p→∞

‖u(·, t)‖p = ‖u(·, t)‖∞. (1490)

Now fix any p > 2 and define ϕ : R→ R by ϕ(v) := |v|p. Then note ϕ is convex since

ϕ′′(u) =
(
n|u|p−2u

)′
= n(n− 1)|u|p−2 ≥ 0. (1491)

Next define the energy e via

e(t) :=

∫
Ω
ϕ(u) dx = ‖u(·, t)‖pp. (1492)

Then differentiating in time yields

ė(t) =

∫
Ω
ϕ̇(u)ut dx

=

∫
Ω
ϕ̇(u) (∆u− u) dx

=

∫
Ω
−pϕ(u) + ϕ̇(u)∆u dx

=

∫
Ω
−pϕ(u)− ϕ̈(u)|Du|2 dx−

∫
∂Ω
ϕ̇(u)

∂u

∂ν
dσ

≤
∫

Ω
−pϕ(u) dx

= −pe(t).

(1493)
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The second equality holds by (1489), the third since uϕ̇(u) = u · pu|u|p−2 = p|u|p = pϕ(u). The fourth line

follows using integration by parts and the fifth inequality holds since ϕ̈ ≥ 0 due to convexity and ϕ̇(u) = 0

on ∂D. Using Gronwall’s inequality, we deduce

‖u(·, t)‖pp = e(t) ≤ e(0) exp

(∫ t

0
−p dt̃

)
= e(0) exp(−pt) = ‖g‖pp exp(−pt). (1494)

Combining (1490) and (1494), we see for (x, t) ∈ Ω× (0,∞)

|u(x, t)| ≤ ‖u(·, t)‖∞ = lim
p→∞

‖u(·, p)‖p = lim
p→∞

(
‖g‖pp exp(−pt)

)1/p
= lim

p→∞
‖g‖p exp(−t) = ‖g‖∞ exp(−t),

(1495)

where the final equality holds and is finite since g is bounded. This completes the proof. �
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S10.3. Let Ω be a bounded region in Rn with smooth boundary. Prove C2 solutions to the following

problem are unique: 
−∆u+ a(x)u = 0 in Ω,

∂u

∂ν
= f(x) on ∂Ω,

(1496)

where a(x) > 0, f(x) ∈ C2(Ω), and ν is the outward normal vector along ∂Ω.

Solution:

Suppose u and v are solutions to the PDE and set w = u− v. It suffices to show w is zero everywhere in

Ω. Observe 
−∆w + aw = 0 in Ω,

∂w

∂ν
= 0 on ∂Ω.

(1497)

Using this, we see

0 ≤
∫

Ω
|Dw|2 dx = −

∫
Ω
w∆w dx+

∫
∂Ω
w
∂w

∂ν
dσ = −

∫
Ω
w∆w dx = −

∫
Ω
aw2 dx ≤ 0, (1498)

where the final inequality holds since a > 0 in Ω. This implies

0 =

∫
Ω
|Dw|2 dx, (1499)

and so Dw = 0 in Ω, i.e., w equals a constant β in Ω. However, (1498) also implies

0 =

∫
Ω
aw2 dx = β2

∫
Ω
a dx. (1500)

Since a > 0 in Ω, the integral on the right hand side of (1500) is positive, which implies β = 0. Thus w is

identically zero in Ω, and we are done. �
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S10.4. Let u solve the one-dimensional wave equation
utt − uxx + u = 0 in R× (0,∞),

u = g on R× {t = 0},

ut = h on R× {t = 0},

(1501)

where g and h are compactly supported.

a) Find an energy associated with u.

b) Show that u(·, t) is compactly supported at each t > 0.

Solution:

a) Consider the energy e : [0,∞)→ R defined via

e(t) :=
1

2

∫
R

u2
x(x, t) + u2

t (x, t) + u2(x, t) dx. (1502)

As we will show in b) below, u(·, t) is compactly supported, and so this energy does not blow up.

b) We first verify that if u = 0 on B(x, r)× {t = 0} for r > 0, then u = 0 in the cone

K(x, r) := {(x, t) : t ∈ [0, r), x ∈ B(x, r − t)} ∪ {(x, τ)}. (1503)

For notational compactness, set S(t) := B(x, r − t). Define the energy E : [0, r)→ R via

E(t) :=
1

2

∫
S(t)

u2
x + u2

t + u2 dx. (1504)

Our hypothesis implies E(0) = 0. Then differentiating in time reveals

Ė(t) =

∫
S(t)

uxuxt + ututt + uut dx+
1

2

∫
∂S(t)

(utu
2
x + u2

t + u2)v · ν dσ,

=

∫
S(t)

uxuxt + ututt + uut dx− 1

2

∫
∂S(t)

u2
x + u2

t + u2 dσ

=

∫
S(t)

ut (−uxx + utt + u)︸ ︷︷ ︸
=0

dx+

∫
∂S(t)

utux −
1

2

(
u2
x + u2

t + u2
)

dσ

=

∫
∂S(t)

utux −
1

2

(
u2
x + u2

t + u2
)

dσ,

(1505)

347 Last Modified: 4/26/2019



ADE Qual Notes Heaton

where v = −ν is the Eulerian velocity of the boundary of S(t). Since for all a, b ∈ R we have

0 ≤ (a− b)2 = a2 − 2ab+ b2 =⇒ ab ≤ 1

2
(a2 + b2), (1506)

we may write

Ė(t) ≤
∫
∂S(t)

1

2
(u2
t + u2

x)− 1

2

(
u2
x + u2

t + u2
)

dσ = −1

2

∫
∂S(t)

u2 dσ ≤ 0. (1507)

Thus, E(t) is nonincreasing. Since E(0) = 0 and the integrand in the definition of E is always

nonnegative, it follows that E(t) = 0 for all t ∈ [0, r). This implies u(·, t) = 0 in S(t) for each

t ∈ [0, r), from which we deduce, by the continuity of u,

u(x, r) = lim
t→(r)−

u(x, t) = lim
t→(r)−

0 = 0. (1508)

These two facts show u = 0 in K(x, r).

We now show u is compactly supported for all time. Let t? ∈ [0,∞). Since u(·, 0) is compactly

supported, there exists r > 0 such that u(x, 0) = 0 for all x satisfying |x| > r. Now pick any z such

that |z| > r+2t?. Then u(·, 0) = 0 in B(z, r+t?). Our above result implies u = 0 in K(z, r+t?), and in

particular u(z, t?) = 0. Since z was an arbitrary point in R−B(0, r + 2t?), it follows that u(z, t?) = 0

for all z ∈ R−B(0, r + 2t?). Whence spt(u(·, t?)) ⊆ B(0, r + 2t?), i.e., u(·, t?) is compactly supported.

Since t? was arbitrarily chosen, we conclude u is compactly supported for all time.

�
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S10.6. Solve the PDE 
u2
x + yuy − u = 0 in R× (1,∞),

u =
x2

4
+ 1 on R× {y = 1}.

(1509)

Solution:

We proceed using the method of characteristics. Define F (p, q, z, x, y) = p2 + yq − z. Then taking p = ux,

q = uy, and z = u yields F = 0 and gives rise to the ODE system



ṗ(s) = −Fx − Fzp = p, p(0) = x0
2 ,

q̇(s) = −Fy − Fzq = −q + q = 0 q(0) = z(0)− p(0)2 = 1,

ẋ(s) = Fp = 2p, x(0) = x0,

ẏ(s) = Fq = y, y(0) = 1,

ż(s) = Fpp+ Fqq = 2p2 + yq, z(0) =
x2

0

4
+ 1.

(1510)

This implies y = es, p = x0
2 e

s, and q = 1. Thus

x = x0 +

∫ s

0
ẋ(t) dt = x0 +

∫ s

0
x0e

t dt = x0e
s, (1511)

and

z = z(0) +

∫ s

0
2p(t)2 + y(t)q(t) dt =

(
x2

0

4
+ 1

)
+

∫ s

0

x2
0

2
e2t + et dt =

x2
0

4
+ 1 +

[
x2

0

4
e2t + et

]s
t=0

, (1512)

whereupon simplifying reveals

z =
x2

0

4
e2s + es =

(xe−s)2

4
· e2s + es =

x2

4
+ y. (1513)

Hence,

u(x, y) =
x2

4
+ y. (1514)

�
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S10.7. Let u : [0, 1] → R be piecewise H1 with a discontinuity at xΓ. That is, if u− : [0, xΓ) → R with

u−(x) = u(x) for x ∈ [0, xΓ) and u+ : (xΓ, 1]→ R for x ∈ (xΓ, 1], then u− ∈ H1(0, xΓ) and u+ ∈ H1(xΓ, 1).

Furthermore, define the jump in u at xΓ as

[u] := lim
x→x+

Γ

u(x)− lim
x→x−Γ

u(x), (1515)

and u as

u :=
1

2

(
lim
x→x+

Γ

u(x) + lim
x→x−Γ

u(x)

)
. (1516)

Show that if 

∂x (βux) = 0 in (0, xΓ) ∪ (xΓ, 1),

[βux] = b,

u = 0 on ∂(0, 1),

[u] = a,

(1517)

where β is piecewise C∞, but with a discontinuity at xΓ and β9x) ≥ ε > 0, then e(u) ≤ e(v) for all

piecewise H1 functions v that also satisfy

v(0) = v(1) = 0 and [v] = a. (1518)

Here we set

e(u) =
1

2

[∫ xΓ

0
u2
xβ dx+

∫ 1

xΓ

u2
xβ dx

]
+ ub. (1519)

Solution:

Let u be a solution to the given PDE. Note the set of all piecewise H1 functions v satisfying (1518) equals

u +A, where A := {w : w(0) = w(1) = 0, [w] = 0, w is piecewise H1}. So, it suffices to show that u + 0

is a minimizer of e over u+A. To do this, we first we show e is convex. Then we show u is an extremizer of e.
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Define ϕ : R→ R via ϕ(v) := v2. Then ϕ is convex since ϕ′′ = 2 > 0. Consequently, for all t ∈ (0, 1) and

v, w ∈ (u+A),

e((1− t)w + tv)

=
1

2

[∫ xΓ

0
ϕ((1− t)wx + tvx)β dx+

∫ xΓ

0
ϕ((1− t)wx + tvx)β dx

]
+ (1− t)w + tvb

=
1

2

[∫ xΓ

0
ϕ((1− t)wx + tvx)β dx+

∫ xΓ

0
ϕ((1− t)wx + tvx)β dx

]
+ (1− t)wb+ tvb

≤ 1

2

[∫ xΓ

0
((1− t)ϕ(wx) + tϕ(vx))β dx+

∫ xΓ

0
((1− t)ϕ(wx) + tϕ(vx))β dx

]
+ (1− t)wb+ tvb

= (1− t)e(w) + te(v),

(1520)

and so e is convex.

Let q ∈ A. Then define τ : R→ R by τ(ε) := e(u+ εq). We claim τ ′(0) = 0. Since e is convex, it follows

that ε = 0 is a minimizer of τ , i.e.,

e(u) ≤ e(u+ εq), for all ε ∈ R. (1521)

In particular, e(u) ≤ e(u+ q). Since q was arbitrarily chosen, this result holds for all q ∈ A. Whence

e(u) ≤ e(u+ q), for all q ∈ A, (1522)

which is precisely what we set out to show.

All that remains is to verify τ ′(0) = 0. Since ∂x(uxβ) = 0, we know uxβ is constant on (0, xΓ) and (xΓ, 1).

Thus, there exists α1, α2 ∈ R such that

uxβ =


α1 in (0, xΓ),

α2 in (xΓ, 1),

(1523)

and the fact [βux] = b implies α2 − α1 = b. Since [q] = 0, we further know there exists α? such that

α? = lim
x→x−Γ

q(x) = lim
x→x+

Γ

q(x). (1524)
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This implies

e(u+ εq) =
1

2

[∫ xΓ

0
(u2
x + 2εuxqx + ε2q2

x)β dx+

∫ 1

xΓ

(u2
x + 2εuxqx + ε2q2

x)β dx

]
+ u+ εqb

= e(u) + ε

[∫ xΓ

0
uxqxβ dx+

∫ 1

xΓ

uxqxβ dx+ qb

]
+ ε2

[∫ xΓ

0
q2
xβ dx+

∫ 1

xΓ

q2
xβ dx

]
= e(u) + ε

[
α1

∫ xΓ

0
qx dx+ α2

∫ 1

xΓ

qx dx+ qb

]
+ ε2

[∫ xΓ

0
q2
xβ dx+

∫ 1

xΓ

q2
xβ dx

]
= e(u) + ε [α1(α? − q(0)) + α2 (q(1)− α?)) + α?(α2 − α1)] + +ε2

[∫ xΓ

0
q2
xβ dx+

∫ 1

xΓ

q2
xβ dx

]
= e(u) + +ε2

[∫ xΓ

0
q2
xβ dx+

∫ 1

xΓ

q2
xβ dx

]
,

(1525)

where we note q(0) = q(1) = 0. From this, we conclude

τ ′(0) = lim
ε→0

e(u+ εq)− e(u)

ε
= lim

ε→0+
ε

[∫ xΓ

0
q2
xβ dx+

∫ 1

xΓ

q2
xβ dx

]
= 0. (1526)
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S10.8. Find a solution of the inhomogeneous initial value problem


ut + aux = f(x, t) in R× (0,∞),

u = φ on R× {t = 0}.
(1527)

Solution:

Since the PDE is linear, we may apply the superposition principle to say a solution u may be expressed

via u = v + w, where 
vt + avx = 0 in R× (0,∞),

v = φ on R× {t = 0},
(1528)

and 
wt + awx = f in R× (0,∞),

w = 0 on R× {t = 0}.
(1529)

Set F (p, q, z, x, t) = q + ap. Then taking p = vx, q = vt, and z = v, we deduce F = 0 and the met-

hod of characteristics gives rise to the ODE system
ẋ(s) = Fp = a, x(0) = x0,

ṫ(s) = Fq = 1, t(0) = 0,

ż(s) = Fpp+ Fqq = ap+ q = 0, z(0) = φ(x0).

(1530)

This implies t = s, z is constant along characteristics, and

x− x0 =

∫ t

0
ẋ(τ) dτ =

∫ t

0
a dτ = at =⇒ x0 = x− at. (1531)

Therefore,

v(x, t) = z(t) = z(0) = φ(x0) = φ(x− at). (1532)

To solve for w, we use Duhammel’s principle to write

w(x, t) =

∫ t

0
w̃(x, t; s) ds, (1533)
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where 
w̃t(x, t; s) + aw̃x(x, t; s) = 0 in R× (s,∞),

w̃(x, t; s) = f(x, s) on R× {t = s}.
(1534)

In likewise fashion to when we solved for v, we see

w̃(x, t; s) = f(x− a(t− s), t) in R× [s,∞). (1535)

Thus,

w(x, t) =

∫ t

0
f(x− a(t− s), s) ds, (1536)

from which we conclude a solution u to our PDE is given by

u(x, t) = φ(x− at) +

∫ t

0
f(x− a(t− s), s) ds. (1537)

�
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2009 Fall

F09.1. Let u(x) be harmonic in the open ball {x ∈ Rn : |x| < R}. Assume that u(x) ≥ 0. Show that the

following Harnack inequality holds,

R2 − |x|2

(R+ |x|)n
u(0) ≤ R2−nu(x) ≤ R2 − |x|2

(R− |x|)n
u(0), for all |x| < R. (1538)

Solution:

We assume u ∈ C
(
D
)
, where D := {x ∈ Rn : |x| < R} so that we may define g : ∂D → R by g(x) := u(x)

for all x ∈ ∂D. Then Poisson’s formula for the ball states

u(x) =
R2 − |x|2

nα(n)R

∫
∂D

g(y)

|x− y|n
dσ(y), for all x ∈ D. (1539)

Though direct computation, we find

u(0) =
1

nα(n)Rn−1

∫
∂D

g(y) dσ(y). (1540)

Together with the fact |y − x| ≤ |y|+ |x| = R+ |x| for y ∈ ∂D, this implies

u(x) ≥ R2 − |x|2

nα(n)R

∫
∂D

g(y)

(R+ |x|)n
dσ(y)

=
R2 − |x|2

(R+ |x|)n
·Rn−2 · 1

nα(n)Rn−1

∫
∂D

g(y) dσ(y)

=
R2 − |x|2

(R+ |x|)n
·Rn−2 · u(0).

(1541)

Upon multiplying by R2−n, this verifies the left hand inequality in (1538). Likewise, |y− x| ≥ ||y| − |x|| =

R− |x| for all y ∈ ∂D and x ∈ D, and so

u(x) ≤ R2 − |x|2

nα(n)R

∫
∂D

g(y)

(R− |x|)n
dσ(y)

=
R2 − |x|2

(R− |x|)n
·Rn−2 · 1

nα(n)Rn−1

∫
∂D

g(y) dσ(y)

=
R2 − |x|2

(R− |x|)n
·Rn−2 · u(0).

(1542)

Together (1541) and (1542) yield (1538), and the proof is complete. �
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F09.2. Let Ω ⊂ Rn be a bounded open set and let V ∈ C(Ω). Show that for ε > 0 small enough, the

Dirichlet problem 
(−∆ + εV )u = f in Ω,

u = 0 on ∂Ω,

(1543)

has a unique solution in the space H1
0 (Ω), for each f ∈ L2(Ω).

Solution:

As verified from integrating a smooth solution to the PDE by parts, the weak formulation of our PDE is

∫
Ω
Du ·Dv + εV uv dx =

∫
Ω
fv dx, for all v ∈ H, (1544)

where H := H1
0 (Ω). To this end, define the bilinear form B : H×H → R and the linear form `(f) : H → R,

respectively, via

B[u, v] :=

∫
Ω
Du ·Dv + εV uv dx and `(v) :=

∫
Ω
fv dx. (1545)

We claim that if ε > 0 is sufficiently small, then B is coercive and bounded and ` is bounded. Therefore,

the Lax-Milgram theorem asserts there exists a unique u ∈ H such that

B[u, v] = `(v), for all v ∈ H, (1546)

i.e., by (1544) and (1545), u is the unique weak solution to the given PDE. All that remains is to verify

the three assumptions for ε > 0 sufficiently small. Observe B is bounded since

|B[u, v]| ≤ ‖|Du||Dv|‖L1(Ω) + εC1‖uv‖L1(Ω)

≤ ‖Du‖L2(Ω)‖Dv‖L2(Ω) + εC1‖u‖L2(Ω)‖v‖L2(Ω)

≤ (1 + εC1)‖u‖H‖v‖H ,

(1547)

where C1 := maxΩ |V |, which exists since V is continuous and Ω is compact. The first inequality holds

from application of the Cauchy-Schwarz and triangle inequalities. The second inequality is an application

of the Cauchy-Schwarz inequality (or Hölder’s inequality). Likewise, ` is bounded since

|`(v)| ≤ ‖vf‖L1(Ω) ≤ ‖v‖L2(Ω)‖f‖L2(Ω) ≤ ‖f‖L2(Ω)‖v‖H , (1548)
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where we note f ∈ L2(Ω). Furthermore, Poincaré’s theorem asserts there exists a C2 > 0, depending only

on Ω, such that

‖w‖L2(Ω) ≤ C2‖Dw‖L2(Ω), for all w ∈ H. (1549)

Assuming ε > 0 satisfies

1− εC1C2 > 0, (1550)

we deduce

B[u, u] =

∫
Ω
|Du|2 + εV u2 dx

≥
∫

Ω
|Du|2 − εC1u

2 dx

= ‖Du‖L2(Ω) − εC1‖u‖L2(Ω)

≥ [1− εC1C2] ‖Du‖L2(Ω)

≥ [1− εC1C2] · 1

2

[
‖Du‖2L2(Ω) +

1

C2
‖u‖2L2(Ω)

]
≥ 1− εC1C2

2
·min{1, 1/C2}‖u‖2H ,

(1551)

and so B is coercive. Thus, if ε > 0 is sufficiently small that (1550) holds, then each of the needed

assumptions holds. This completes the proof. �
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F09.4. Let Lu = −uxx + V (x)u, where V (x) is real-valued, Au = 4uxxx − 3((V u)x + V ux). A page of

exciting computations shows that the commutator LA−AL is given by

(LA−AL)u = (6V Vx − Vxxx)u. (1552)

Do not do that computation. Instead suppose that V depends on the parameter t as well as x, and

is a solution of the evolution equation Vt = 6V Vx − Vxxx (the Korteweg-De Vries) equation. Suppose that

u(x, t) satisfies

L(t)u = −uxx + V (t)u = λ(t)u and

∫
R

u2 dx = 1, (1553)

i.e., u is a normalized eigenfunction for the operator L(t). Show that λ(t) must be independent of t.

Solution:

It suffices to show λ is constant in time. Differentiating in time reveals

(Lu)t = Lut + Vtu = Lut + (LA−AL)u = L(∂t +A)u−Aλu. (1554)

Thus, expanding the derivative on the left hand side,

λ̇u+ λut = L(∂t +A)u−Aλu =⇒ λ̇u+ λ(∂t +A)u = L(∂t +A)u. (1555)

Next observe that for all such normalized eigenfunctions v and w, we have

∫
R

vLw dx =

∫
R

v(−wxx + V w) dx =

∫
R

−wvxx + V vw dx =

∫
R

wLv dx, (1556)

where the second equality follows from integrating by parts twice and noting the boundary terms vanish

since |v|, |w| −→ 0 as |x| −→ 0. Consequently,∫
R

λ̇u2 + λ(∂t +A)u2 dx =

∫
R

[L(∂t +A)u]u dx =

∫
R

(∂t +A)u(Lu) dx =

∫
R

λ(∂t +A)u2 dx. (1557)

Subtracting the common terms from both sides, we see

0 =

∫
R

λ̇u2 dx = λ̇

∫
R

u2 dx = λ̇, (1558)

which implies λ is constant in time. This completes the proof. �
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F09.5. Solve the Hamilton-Jacobi equation


ut +

1

2
(ux)2 − x = 0 in R× (0,∞),

u = αx on R× {t = 0},
(1559)

for some scalar α ∈ R. The solution is linear in x, but we want you to use the method of characte-

ristics to solve this problem. The linearity in x is a check on your answer.

Solution:

We proceed using the method of characteristics. Define F (p, q, z, x, t) := q + 1
2p

2 − x. Taking q = ut and

p = ux and z = u, we see F = 0 and the method of characteristics gives rise to the ODE system



ṗ(s) = −Fx − Fzp = 1, p(0) = α,

q̇(s) = −Ft − Fzq = 0, q(0) = x0 − α2

2 ,

ẋ(s) = Fp = p, x(0) = x0,

ṫ(s) = Fq = 1, t(0) = 0,

ż(s) = Fpp+ Fqq = p2 + q =
p2

2
+ x, z(0) = αx0.

(1560)

This implies t = s, p = t+ α, and so

x− x0 =

∫ t

0
ẋ(τ) dτ =

∫ t

0
p(τ) dτ =

p2 − α2

2
=⇒ x0 = x− p2 − α2

2
. (1561)

Therefore,

z = z(0) +

∫ t

0

p2(τ)

2
+ x dτ= αx0 +

∫ t

0
p2(τ) + x0 − α2

2
dτ = px0 +

p3 − α3

3
− tα2

2
. (1562)

Substituting for x0 reveals

z = p

(
x− p2 − α2

2

)
+

2p3 − 2α3 − 3α2t

6
= px+

1

6

[
3pα2 − p3 − 2α3 − 3α2t

]
, (1563)

and so

u(x, t) = (t+ α)x+
1

6

[
3(t+ α)α2 − (t+ α)3 − 2α3 − 3α2t

]
. (1564)

�
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F09.6. Let x(t) be a nonnegative differentiable function such that

ẋ(t) ≥ 1

1 + tx(t)
+ t− 1, for all t ≥ 0. (1565)

Show that x(t) ≥ 1− exp(−t2/2) for t ≥ 0.

Hint: Derive a differential equation for the function t 7→ 1− exp(−t2/2).

Solution:

Following the hint, set f(t) := 1− exp(−t2/2). Then

ḟ = t exp(−t2/2) = t
[
1− (1− exp(−t2/2))

]
= t [1− f ] . (1566)

We claim ẋ ≥ t [1− x]. Indeed,

ẋ− t(1− x) ≥
[

1

1 + tx
+ t− 1

]
− t(1− x) =

1

1 + tx
[1 + (1 + tx)(xt− 1)] =

(xt)2

1 + tx
≥ 0, (1567)

where the final inequality holds since the numerator is nonnegative and 1 + tx ≥ 1 + 0 as x is nonnegative.

Since x is nonnegative, we also know x(0) ≥ 0 = 1 − exp(0) = f(0). By way of contradiction, suppose

there exists τ > 0 such that f(τ) > x(τ). By the intermediate value theorem, since x(0) ≥ f(0) and x and

f are continuous, it follows that there exists τ1 ∈ [0, τ) such that x(τ1) = f(τ1). Choose δ > 0 to be the

smallest positive number such that f(τ − δ) = x(τ − δ). Then f(t) > x(t) for all x ∈ (τ − δ, τ). Whence

x(τ) = x(τ−δ)+

∫ τ

τ−δ
ẋ(s) ds ≥ x(τ−δ)+

∫ τ

τ−δ
s[1−x(s)] ds ≥ f(τ−δ)+

∫ τ

τ−δ
s[1−f(s)] ds = f(τ), (1568)

which contradicts our assumption that f(τ) > x(τ). Therefore, we conclude x(t) ≥ f(t) for all t ≥ 0. �
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F09.7. Let u(x, t) solve the wave equation


(∂tt −∆)u = 0 in R×R,

u = φ on R× {t = 0},

ut = 0 on R× {t = 0}.

(1569)

Show that the function

ũ(x, t) =
1√
4πt

∫ ∞
−∞

e−s
2/4tu(x, s) ds, (1570)

defined for (x, t) ∈ R× (0,∞), satisfies the initial value problem


(∂t −∆)ũ = 0 in R× (0,∞),

ũ = φ on R× {t = 0}.
(1571)

Solution:

Using the change of variables z = s/
√

4t, we may write

ũ(x, t) =
1√
π

∫ ∞
−∞

e−z
2
u(x,
√

4tz) dz, (1572)

and so

lim
t→0+

ũ(x, t) = lim
t→0+

1√
π

∫ ∞
−∞

e−z
2 · u(x, z

√
4t) dz

=
1√
π

∫ ∞
−∞

e−z
2 · u(x, 0) dz

= u(x, 0) · 1√
π

∫ ∞
−∞

e−z
2

dz

= u(x, 0)

= φ(x).

(1573)

We now carefully justify the second equality. Since u solves the wave equation and has compact ini-

tial data, it follows that u(x, ·) has compact support for all x ∈ R. Also with the fact u is continuous, we
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deduce u(x, ·) ∈ L∞(R). This implies

∫ ∞
−∞

∣∣∣e−z2
u(x, z

√
4t)
∣∣∣ dz ≤ ‖u(x, ·)‖L∞(R)

∫ ∞
−∞

e−z
2

dz =
√
π‖u(x, ·)‖L∞(R) <∞, (1574)

which shows the integrand in the first line of (1573) is dominated by an integrable function. Thus, the

dominated convergence theorem asserts the limit can be brought inside the integral since the pointwise

limit of u(x, z
√

4t) exists as t −→ 0+. Thus (1573) holds.

Next observe

ũt(x, t) = ∂t

[∫ ∞
−∞

e−s
2/4t

√
4πt

u(x, s) ds

]

=

∫ ∞
−∞

∂ss

[
e−s

2/4t

√
4πt

]
u(x, s) ds

=

∫ ∞
−∞

e−s
2/4t∂ssu(x, s) ds+

[
∂s

(
e−s

2/4t

√
4πt

)
u(x, s)−

(
e−s

2/4t

√
4πt

)
us(x, s)

]∞
s=−∞

=
1√
4πt

∫ ∞
−∞

e−s
2/4t∂ssu(x, s) ds

=
1√
4πt

∫ ∞
−∞

e−s
2/4t∂xxu(x, s) ds

= ∂xx

[
1√
4πt

∫ ∞
−∞

e−s
2/4tu(x, s) ds

]
= ∂xxũ(x, t).

(1575)

The third equality holds since the terms in braces is the fundamental solution of the heat equation.

The fourth equality follows from integrating by parts twice. The fifth equality holds since u has compact

support. The sixth equality since u solves the wave equation. Thus, (1573) and (1575) hold, which verify

(1571), and the proof is complete. �
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2009 Spring

S09.1. Let h(t) and a(t) be continuous and bounded functions on [0,∞), with a(t) ≥ 0. Let x(t) be a

continuous function such that

x(t) ≤ h(t)

∫ t

0
a(s)x(s) ds+

1

1 + t2
, for all t ∈ [0,∞). (1576)

Assume that ∫ ∞
0
|h(t)| dt <∞. (1577)

Prove x(t) is bounded above on [0,∞).

Solution:

If

sup
t∈[0,∞)

x(t) ≤ 5, (1578)

then x(t) is certainly bounded above. Now consider the case when (1578) does not hold. For each t ∈ [0,∞)

observe

x(t) ≤ C|h(t)|
∫ t

0
St ds+ 1 = Ct|h(t)|St + 1. (1579)

where C := max{1, ‖a‖L∞(R)}, St := supτ∈[0,t] x(τ), and x ∈ L∞([0, t]) since x is continuous and [0, t] is

bounded. We claim

lim
t→∞

t|h(t)| = 0. (1580)

This implies there exists T1 ∈ (0,∞) such that

t|h(t)| < 1

4C
, for all t ≥ T1. (1581)

Choose T2 ∈ (0,∞) large enough such that ST2 = supt∈[0,T2) x(t) ≥ 4. Taking T := max{T1, T2} yields

x(t) ≤ Ct|h(t)|St + 1 ≤ 1

4
St + 1 ≤ 1

4
St +

1

4
St ≤

St
2
, for all t ≥ T . (1582)

We claim

x(t) ≤ ST , for all t ∈ [0,∞). (1583)
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This immediately follows for t ∈ [0, T ]. By way of contradiction, now suppose there is t > T such that

x(t) > ST . By the continuity of x, this would imply there exists τ ∈ (T, t) such that the supremum Sτ is

attained at τ , i.e.,

Sτ = x(τ) ≤ Sτ
2

=⇒ 1 ≤ 1

2
, (1584)

a contradiction (n.b. the division by Sτ is justified since Sτ ≥ 4.) Therefore (1583) holds, as claimed, and

we see x(t) is bounded above.

All that remains is to verify (1580). By way of contradiction, suppose this equality does not hold. This

implies there exists ε > 0 such that

lim sup
t→∞

t|h(t)| ≥ ε. (1585)

Consequently, there exists T2 such that

|h(t)| ≥ ε

t
, for all t ≥ T2. (1586)

Thus, ∫ ∞
0
|h(t)| dt =

∫ T2

0
|h(t)| dt+

∫ ∞
T2

|h(t)| dt

≥
∫ T2

0
|h(t)| dt+ ε

∫ ∞
T2

1

t
dt

=

∫ T2

0
|h(t)| dt+ lim

T→∞
ln(T )− ln(T2)

= +∞.

(1587)

This contradicts (1577), and so our assumption that (1580) does not hold was false. �
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S09.2. Let p ∈ C1([0, 1]) and q ∈ C([0, 1]) be real-valued with p > 0. Show that the eigenvalue problem

− (pu′)′ + qu = λu, u(0) = u(1) = 0 (1588)

has the following properties:

a) All the eigenvalues are simple;

b) There are at most finitely many negative eigenvalues.

Solution:

a) Let u and v be two eigenfunctions with a common eigenvalue λ. Letting L be the differential operator,

it follows that

0 = λuv − λuv = (Lu)v − u(Lv)

=
[
−(pu′)′ + qu

]
v − u

[
−(pv′)′ + qv

]
= (pv′)′u− (pu′)′v

=
[
(pv′u)′ − pv′u′

]
−
[
(pu′v)′ − pu′v′

]
=
[
p(v′u− vu′)

]′
.

(1589)

Integrating once and dividing by p reveals there exists C ∈ R such that

(v′u− vu′) =
C

p
in [0, 1]. (1590)

However, the boundary conditions imply v′u− vu′ = 0 on ∂[0, 1]. Thus C = 0 and we deduce

W (u, v) =

∣∣∣∣∣∣ u v

u′ v′

∣∣∣∣∣∣ = uv′ − vu′ = 0 in [0, 1], (1591)

where W (u, v) is the Wronskian. This establishes that u and v are linearly dependent. Therefore, all

the eigenvalues are simple.
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b) Since this is a regular Sturm Liouville problem, the eigenvalues {λn} are countable and are such that

λn −→ ∞ as n −→ ∞. Consequently, it suffices to show the eigenvalues are bounded from below. By

Sturm Liouville theory, the small eigenvalue satisfies

λ = min
u∈A

〈u,Lu〉
〈u, u〉

, (1592)

where A := {u ∈ C2(0, 1)∩C1[0, 1] : u(0) = u(1) = 0} and 〈·, ·〉 is the L2 scalar product on [0, 1]. For

all u ∈ A,

〈u,Lu〉 =

∫ 1

0
u(−(pu′)′ + qu) dx

=

∫ 1

0
qu2 + p(u′)2 dx−���

���:
0[

u(pu′)
]1
0

=

∫ 1

0
qu2 + p(u′)2 dx

≥ α1 〈u, u〉+ α2 〈u′, u′〉 ,

(1593)

where α1 := min[0,1] q and α2 := min[0,1] p. By Poincaré’s theorem, there exists C > 0 dependent

only on [0, 1] such that

〈u, u〉 =

∫ 1

0
u2 dx ≤ C

∫ 1

0
(u′)2 dx = C 〈u′, u′〉 , for all u ∈ A. (1594)

Therefore,

〈u,Lu〉
〈u, u〉

≥ α1 〈u, u〉+ α2 〈u′, u′〉
〈u, u〉

= α1 + α2 ·
〈u′, u′〉
〈u, u〉

≥ α1 +
α2

C
, for all u ∈ A, (1595)

from which it follows

λ = min
u∈A

〈u,Lu〉
〈u, u〉

≥ α1 +
α2

C
> −∞. (1596)

This shows the smallest eigenvalue is bounded below by a constant, and the proof is complete.

�
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S09.3. Let Ω ⊂ Rn be open and let u ∈ C∞(Ω) be harmonic in Ω so that ∆u = 0. Show there exists a

constant C = C(n), depending only on the dimension n, such that

|∇u(x)| ≤ C

d(x)
sup

Ω
|u|, for all x ∈ Ω, (1597)

where

d(x) := inf
y∈∂Ω

|x− y| (1598)

is the Euclidean distance from x to the boundary of Ω. Generalize (1597) to obtain similar bounds for

higher order derivatives of u.

Hint: Use the Poisson formula for the function u in a ball.

Solution:

Observe ∂βu is harmonic for each multi-index β since

∆∂βu =

n∑
i=1

∂xixi∂
βu = ∂β

(
n∑
i=1

uxixi

)
= ∂β (∆u) = ∂β0 = 0. (1599)

Fix any x ∈ Ω. Since Ω is open, d(x) > 0. Let µx := d(x)/2. Then Poisson’s formula for u in a ball yields,

for all i ∈ {1, 2, . . . , n},

|uxi(x)| =

∣∣∣∣∣−
∫
B(x,µx)

u(z) dz

∣∣∣∣∣= 1

α(n)µnx

∣∣∣∣∣
∫
B(x,µx)

u(z) dz

∣∣∣∣∣ =
1

α(n)µnx

∣∣∣∣∣
∫
∂B(x,µx)

u(z)νi dσ

∣∣∣∣∣ , (1600)

where the final equality holds via integration by parts and α(n) is the measure of the unit ball in Rn.

This implies

|uxi(x)| ≤ 1

α(n)µnx

∫
∂B(x,µx)

|u(z)|νi dσ

≤ 1

α(n)µnx

∫
∂B(x,µx)

sup
Ω
|u| dσ

=
1

α(n)µnx
· nα(n)µn−1

x · sup
Ω
|u|

=
n

µx
sup

Ω
|u|

=
2n

d(x)
sup

Ω
|u|,

(1601)
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where the third line follows from integration by parts and α(n) denotes the measure of the unit ball

in Rn. This implies

|∇u(x)| =

(
n∑
i=1

u2
xi(x)

)1/2

≤

(
n∑
i=1

2n

d(x)
sup

Ω
|u|

)
=

2n3/2

d(x)
sup

Ω
|u|. (1602)

Taking C = 2n3/2, we see (1597) holds, as desired.

In similar fashion to above, we see, for i, j ∈ {1, 2, . . . , n},

∣∣∂xixju(x)
∣∣ ≤ 1

α(n)µnx

∫
∂B(x,µx)

|uxi(z)|νj dσ ≤ 1

α(n)µnx

∫
∂B(x,µx)

sup
∂B(x,µx)

|uxi | dσ =
n

µx
sup

∂B(x,µx)
|uxi |.

(1603)

However, due to our choice of µx,

sup
∂B(x,µx)

|uxi | ≤ sup
z∈∂B(x,µx)

2n

d(z)
sup

Ω
|u| ≤ 2n

µx
sup

Ω
|u|, (1604)

and so ∣∣∂xixju(x)
∣∣ ≤ 2n2

µ2
x

sup
Ω
|u| =

(
2n

d(x)

)2

· 2 sup
Ω
|u|. (1605)

This inspires us to prove that for each multi-index β with |β| = k we have

|∂βu(x)| ≤
(

2n

d(x)

)k
· 2f (k) sup

Ω
|u|, (1606)

where for each nonnegative integer k

f(k) :=
k−1∑
i=1

i =
k(k − 1)

2
. (1607)

We proceed by induction. The base case is given in (1601). Inductively, suppose (1606) holds for any

multi-index β with |β| = k. Now let γ be any multi-index with |γ| = k + 1. This implies there exists

i ∈ {1, 2, . . . , n} and a multi-index β with |β| = k such that ∂γ = ∂β∂xi . Consequently, in likewise manner
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to above,

|∂γu(x)| =
∣∣∣∂βuxi(x)

∣∣∣
=

1

|B(x, µx)|

∣∣∣∣∣
∫
∂B(x,µx)

∂βu(z)νi dσ

∣∣∣∣∣
≤ |∂B(x, µx)|
|B(x, µx)|

sup
z∈∂B(x,µx)

|∂βu(z)|

≤ n

µx
sup

z∈∂B(x,µx)

(
2n

d(z)

)k
· 2f(k) sup

Ω
|u|

=
2n

d(x)
·
(

2n

d(x)/2

)k
· 2f(k) sup

Ω
|u|

=

(
2n

d(x)

)k+1

· 2k+f(k) sup
Ω
|u|

=

(
2n

d(x)

)k+1

2f(k+1) sup
Ω
|u|,

(1608)

and we have closed the induction. By the principle of mathematical induction, the claim follows. �
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S09.4. Let Ω be a bounded open set and let V ∈ C(Ω) satisfy V (x) ≥ 0. Show that for each f ∈ L2(Ω),

the Dirichlet problem 
(−∆ + V )u = f in Ω,

u = 0 on ∂Ω,

(1609)

has a unique solution in the space H1
0 (Ω).

Solution:

Let us momentarily assume u is smooth. Then for all v ∈ C∞c (Ω), we may multiply the PDE and by v and

integrate by parts to obtain

0 =

∫
Ω

(−∆u+V u− f)v dx =

∫
Ω

Du ·Dv+V uv− fv dx+

∫
∂Ω

∂u

∂n
v dx =

∫
Ω

Du ·Dv+V uv dx−
∫

Ω

fv dx, (1610)

where the boundary term vanishes due to the compact support of v. Note the right hand side of the

above makes sense even if u is not C2, but rather only in u ∈ H1
0 (Ω). So, letting H := H1

0 (Ω) and defining

` : H → R and B : H ×H → R by

B[u, v] :=

∫
Ω
Du ·Dv + V uv dx and `(v) :=

∫
Ω
vf dx, (1611)

using the weak formulation of the PDE, it suffices to show there exists a unique u ∈ H such that

B[u, v] = `(v), for all v ∈ H. (1612)

We claim the bilinear form B is coercive and bounded and the linear form ` is bounded. Thus, the

assumptions of the Lax-Milgram theorem hold, from which we deduce there exists a unique solution u ∈ H

such that (1612) holds.

All that remains is to verify our claims. Observe ` is bounded since the fact f ∈ L2(Ω) implies

|`(v)| ≤ ‖vf‖L1(Ω) ≤ ‖v‖L2(Ω)‖f‖L2(Ω) ≤ ‖v‖H‖f‖L2(Ω), for all v ∈ H. (1613)
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Similarly, B is bounded since, for all u, v ∈ H,

|B[u, v]| =
∣∣∣∣∫

Ω
Du ·Dv + V uv dx

∣∣∣∣
≤ ‖Du ·Dv‖L1(Ω) + ‖V ‖L∞(Ω)‖uv‖L1(Ω)

≤ ‖Du‖L2(Ω)‖Dv‖L2(Ω) + ‖V ‖L∞(Ω)‖u‖L2(Ω)‖v‖L2Ω

≤ ‖u‖H‖v‖H + ‖V ‖L∞(Ω)‖u‖H‖v‖H

=
(
1 + ‖V ‖L∞(Ω)

)
‖u‖H‖v‖H .

(1614)

Next note Poincaré’s inequality asserts there exists α > 0, dependent only on Ω, such that

‖u‖L2(Ω) ≤ α‖Du‖L2(Ω), for all u ∈ H. (1615)

Therefore, together with the negativity of V , we deduce

B[u, u] =

∫
Ω
|Du|2 + V u2 dx

≥ ‖Du‖2L2(Ω)

=
1

2

[
‖Du‖2L2(Ω) + ‖Du‖2L2(Ω)

]
≥ 1

2

[
‖Du‖2L2(Ω) +

1

α2
‖u‖2L2(Ω)

]
≥ min{1, 1/α2}

2

[
‖Du‖2L2(Ω) + ‖u‖2L2(Ω)

]
=

min{1, 1/α2}
2

‖u‖2H ,

(1616)

i.e., B is coercive. Since all our claims have been verified, the proof is now complete. �
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S09.5. Consider the complementary error function

F (x) =
2√
π

∫ ∞
x

e−t
2

dt. (1617)

Show

F (x) =
e−x

2

x
√
π

(
1 +O

(
1

x2

))
as x −→∞. (1618)

Show also that this estimate for large x can be refined to a complete asymptotic expansion

F (x) ∼ e−x
2

x
√
π

∞∑
k=0

ak
x2k

, (1619)

for some coefficients ak. (You do not have to determine each ak.)

Solution:

First observe differentiating yields

d

dt

[
e−t

2
]

= −2te−t
2

=⇒ e−t
2

= − 1

2t

d

dt

[
e−t

2
]
. (1620)

Consequently,

∫ ∞
x

e−t
2

dt =

∫ ∞
x
− 1

2t

d

dt

[
e−t

2
]

dt=

[
− 1

2t
· e−t2

]∞
x

−
∫ ∞
x

1

2t2
e−t

2
dt =

e−x
2

2x
−
∫ ∞
x

1

2t2
e−t

2
dt. (1621)

Now for each nonnegative integer k define fk : R→ R by fk(t) := t−ke−t
2
. Then

∫ ∞
x

fk(t) dt =

∫ ∞
x
− 1

2tk+1

d

dt

[
e−t

2
]

dt =
e−x

2

2xk+1
− k + 1

2

∫ ∞
x

fk+2(t) dt. (1622)

Additionally, for x > 0 and k > 1 we see

∫ ∞
x

fk(t) dt =

∫ ∞
x

e−t
2

tk
dt ≤

∫ ∞
x

t−k dt =

[
t1−k

1− k

]∞
x

=
x1−k

k − 1
= O(x1−k), as x −→∞. (1623)

Thus, for k > 1, ∫ ∞
x

fk(t) = O(x1−k), as x −→∞. (1624)
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Compiling our results, we see, as x −→∞,

F (x) =
2√
π

∫ ∞
x

f0(t) dt

=
2√
π

[
e−x

2

2x
− 1

2

∫ ∞
x

f2(t) dt

]

=
2√
π

[
e−x

2

2x
− e−x

2

22x3
+

1 · 3
22

∫ ∞
x

f4(t) dt

]

=
2√
π

[
e−x

2

2x
− e−x

2

22x3
+

3e−x
2

23x5
− 1 · 3 · 5

23

∫ ∞
x

f6(t) dt

]

=
e−x

2

x
√
π

[
1− 1

2x2
+

3

22x4
− 1 · 3 · 5

22

∫ ∞
x

f6(t) dt

]
=
e−x

2

x
√
π

[
1− 1

2x2
+

3

22x4
+O(x−5)

]
=
e−x

2

x
√
π

[
1 +O(x−2)

]
.

(1625)

This verifies (1618). Furthermore, from the form of the fourth line in (1625), we see

F (x) =
e−x

2

x
√
π

(
1 +

N∑
k=1

(−1)k · 1 · 3 · · · (2k − 1)

2kx2k

)
− 1 · 3 · · · (2N − 1)

2N

∫ ∞
x

f2N (t) dt (1626)

Since our earlier work implies

1 · 3 · · · (2N − 1)

2N

∫ ∞
x

f2N (t) dt = O(x1−2N ), as x −→∞, (1627)

we deduce for large x

F (x) ∼ e−x
2

x
√
π

(
1 +

∞∑
k=1

(−1)k · 1 · 3 · · · (2k − 1)

2kx2k

)
, (1628)

as desired. �
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S09.6. Consider an initial value proble for the focusing cubic non-linear Schrödinger equation

iut = −1

2
uxx − |u|2u, u(x, 0) = ϕ(x). (1629)

Show that the following quantities are conserved (assuming u vanishes as |x| −→ ∞ together with all of its

derivatives)

a) Mass ∫
R

|u(x, t)|2 dx (1630)

b) Energy ∫
R

1

2
|ux|2 −

1

2
|u|4 dx. (1631)

Solution:

a) First note

ut =
1

i

[
−uxx

2
− |u|2u

]
=⇒ ut = −1

i

[
−uxx

2
− |u|2u

]
=

1

i

[
uxx
2

+ |u|2u
]
. (1632)

Then differentiating the mass in time yields

d

dt

∫
R

|u(x, t)|2 dx =

∫
R

∂t [uu] dx

=

∫
R

utu+ uut dx

=

∫
R

[
−uxxu

2i
− |u|

4

i

]
+

[
uxxu

2i
+
|u|4

i

]
dx

=
1

2i

∫
R

uxxu− uxxu dx

=
1

2i

∫
R

−uxux + uxux dx

= 0,

(1633)

where the fifth line holds via integration by parts, noting we assume u and all its derivatives va-

nish as |x| −→ ∞. This shows the mass is constant in time, as desired.
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b) Likewise,

d

dt

∫
R

1

2
|ux|2 −

1

2
|u|4 dx =

1

2

∫
R

∂t
[
uxux − (uu)2

]
dx

=
1

2

∫
R

uxuxt + uxtux − 2|u|2(utu+ uut) dx

=
1

2

∫
R

uxuxt + uxtux dx

= −1

2

∫
R

uxxut + utuxx dx

= −1

2

∫
R

ut · 2
[
−iut − |u|2u

]
+ ut · 2

[
iut − |u|2u

]
dx

=

∫
R

|u|2 [uut + uut] dx

= 0,

(1634)

where we recall in (1633) we showed utu+ uut = 0.

�
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S09.7. Solve the PDE 
ut + u2

x = 0,

u(x, 0) = −x2.

(1635)

Find the time T for which |u| −→ ∞ as t −→ T .

Solution:

Set50 g(x) = −x2 and H(p) := p2. Then we see the PDE can be written as the Hamilton-Jacobi equation


ut +H(Du) = 0 in R× (0,∞),

u = g on R× {t = 0}.
(1636)

The associated Lagrangian L is given by the Fenchel transform

L(v) := sup
p∈R

pv −H(p) = pv − p2. (1637)

Differentiating and using the fact this expression is a quadratic and concave down, we discover

0 =
d

dp

[
pv − p2

]
= v − 2p =⇒ p =

v

2
. (1638)

Consequently,

L(v) = v
(v

2

)
−
(v

2

)2
=
v2

4
. (1639)

Then by the Hopf-Lax formula

u(x, t) = min
y∈R

(
t · L

(
x− y
t

)
+ g(y)

)
= min

y∈R

(
(x− y)2

4t
− y2

)
. (1640)

In similar fashion to above, differentiating with respect to y yields

0 =
d

dy

[
(x− y)2

4t
− y2

]
=
y − x

2t
− 2y =⇒ y =

x

1− 4t
. (1641)

Therefore for (x, t) ∈ R× [0, 1/4)

u(x, t) =
1

4t

(
x− x

1− 4t

)2

−
(

x

1− 4t

)2

= − x2

1− 4t
, (1642)

and we see limt→1/4 |u(x, t)| = +∞ for x 6= 0. �

50As in Zane and Peter’s notes, we note that this problem can be solved using the method of characteristics.
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S09.8. Consider the hyperbolic equation

utt + 3uxt + 2uxx = 0 (1643)

in the quarter-plane Q = {(x, t) : x, t > 0}. Assign boundary conditions along t = 0 and x = 0 such that

the boundary value problem in Q will have a unique solution.

Solution:

We shall prescribe conditions for which the PDE uniquely admits the zero solution. The PDE may be

“factored” and rewritten as

0 = (∂t + ∂x)(∂t + 2∂x)u. (1644)

Set v := ut + 2ux. Then set F (p, q, z, x, t) := q+ p. Taking p = vx and q = vt and z = v, we see F = 0 and

the method of characteristics gives rise to the ODE system
ẋ(s) = Fp = 1, x(0) = x0,

ṫ(s) = Fq = 1, t(0) = 0,

ż(s) = Fpp+ Fqq = p+ q = 0, z(0) = z0.

(1645)

From this, we see v is constant along characteristics, which are of the form t = x + C for scalars C ∈ R.

Thus, v is uniquely defined by its values along the x and t axes, i.e., by

v(0, t) = ut(0, t) + 2ux(0, t), and v(x, 0) = ut(x, 0) + 2ux(x, 0). (1646)

In similar fashion, define F̃ (p, q, z, x, t) = q + 2p. Taking q = vt and p = ux and z = u, we see F̃ = 0 and

the method of characteristics gives rise to the ODE system
ẋ(s) = F̃p = 2, x(0) = x0,

ṫ(s) = F̃q = 1, t(0) = 0,

ż(s) = F̃pp+ Fqq = 2p+ q = 0, z(0) = z0.

(1647)

Thus u is constant along characteristics, which are of the form t = 1
2x + C for scalars C ∈ R. Whence u

is RETURN AND FINISH...... Something is missing with argument... �
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S09.9. Consider the boundary value problem in a smooth bounded domain D in Rn


∆u = 0 in D,

∂u

∂n
+ a(x)u = f on ∂D,

(1648)

where n is the outer normal to ∂D.

a) Find a functional whose Euler-Lagrange equation leads to the boundary value problem above.

b) Assume that a(x) > 0. Prove that this boundary value has a unique smooth solution.51

Solution:

a) Define the functional E : H2(D)→ R via

E[u] :=
1

2

∫
D
|Du|2 dx+

∫
∂D

au2

2
− uf dσ. (1649)

Then for all v ∈ H2(D) and ε ∈ R,

E[u+ εv] =

∫
D

1

2
|Du|2 + εDu ·Dv +

ε2

2
|Dv|2 dx+

∫
∂D

au2

2
+ εauv +

ε2av2

2
− uf − εvf dσ

= E[u] + ε

[∫
D

Du ·Dv dx+

∫
∂D

(au− f)v dσ

]
+ ε2

[
1

2

∫
D

|Dv|2 dx+

∫
∂D

av2

2
dσ

]
.

(1650)

Therefore,

δE(u, v) = lim
ε→0+

E[u+ εv]− E[u]

ε

= lim
ε→0+

[∫
D
Du ·Dv dx+

∫
∂D

(au− f)v dσ

]
+ ε

[
1

2

∫
D
|Dv|2 dx+

∫
∂D

av2

2
dσ

]
=

∫
D
Du ·Dv dx+

∫
∂D

(au− f)v dσ.

(1651)

The PDE satisfied by each extremizer of E yields the Euler-Lagrange equation. Supposing

δE(u, v) = 0, for all v ∈ H2(D), (1652)

51We interpret this to mean “Prove this PDE admits at most one solution” rather than also proving existence.
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we obtain, from integrating by parts the expression in (1651),

0 = −
∫
D

∆uv dx+

∫
∂D

(
∂u

∂n
+ au− f

)
v dσ, (1653)

from which it follows, by the arbitrariness of v, that u satisfies (1648).

b) Suppose u and q are two solutions of the given PDE, and set w := u − q. It suffices to show w is

identically zero. Observe that 
∆w = 0 in D,

∂w

∂n
+ aw = 0 on ∂D,

(1654)

and so

0 =

∫
D
w∆w dx = −

∫
D
|Dw|2 dx+

∫
∂D

w
∂w

∂n
dσ = −

[∫
D
|Dw|2 dx+

∫
∂D

aw2 dσ

]
︸ ︷︷ ︸

≥0

≤ 0, (1655)

where we have used the fact aw2 ≥ 0. This implies

∫
D
|Dw|2 dx = 0, (1656)

and so |Du| = 0 in D. Whence w is constant in D. Furthermore,

0 =

∫
∂D

aw2 dσ =⇒ aw2 = 0 on ∂D. (1657)

However, since a > 0, we deduce w = 0 on ∂D. Together with the fact w is constant in D, we conclude

w is identically zero, as desired.

�
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2008 Spring

S08.1 Consider the eigenvalue problem
y′′ + λy = 0 in (0, `),

y′(`) + y(`) = 0

y(0) = 0.

(1658)

a) Show that if f and g satisfy the boundary conditions, then [f ′g − g′f ]`x=0 = 0.

b) Prove all eigenfunctions u1 and u2 are orthogonal in the L2 sense.

c) Find an equation satisfied by the eigenvalues, and find the corresponding eigenfunfctions. Show

graphically that there are an infinite number of positive eigenvalues with lim
n→∞

λn = +∞.

Solution:

a) Suppose f and g satisfy the given boundary conditions. Then

[f ′g − g′f ]`x=0 = f ′(`)g(`)− g′(`)f(`) + f ′(0)g(0)− g′(0)f(0)

= f ′(`)
[
g(`) + g′(`)

]
− g′(`)

[
f(`) + f ′(`)

]
= f ′(`)0− g′(`)0

= 0.

(1659)

b) Let 〈·, ·〉 denote the L2(0, `) scalar product, i.e.,

〈f, g〉 :=

∫ `

0
f(x)g(x) dx. (1660)
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Let u1 and u2 be eigenfunctions with distinct eigenvalues λ1 and λ2, respectively. Then observe

λ1 〈u1, u2〉 = 〈λu1, u2〉

= 〈−u′′1, u2〉

= 〈u′1, u′2〉+
[
−u′1u2

]`
x=0

= 〈u1,−u′′2〉+
[
u1u

′
2 − u′1u2

]`
x=0

= 〈u1, λ2u2〉

= λ2 〈u1, u2〉 .

(1661)

This implies 0 = (λ1 − λ2) 〈u1, u2〉. Since λ1 6= λ2, we conclude 〈u1, u2〉 = 0, as desired.

c) We claim all the eigenvalues are positive. By way of contradiction, suppose the ODE has an eigen-

function v with eigenvalue λ = 0. Then integrating twice yields v = c1x + c2 for some constants

c1, c2 ∈ R. The first boundary condition implies 0 = v(0) = c10 + c2 = c2. Thus c2 = 0. The second

boundary condition implies 0 = v′(`)+v(`) = c1 +c1` = c1(1+`), which implies c1 = 0 since 1+` > 0.

Thus v is identically zero, a contradiction to the fact eigenfunctions are nonzero.

Now suppose there is an eigenfunction v with eigenvalue λ < 0. Let µ =
√
−λ and note µ > 0. Then

v is of the form

v(x) = c1e
−µx + c2e

µx. (1662)

The first boundary condition implies

0 = v(0) = c1 + c2 =⇒ v(x) = c1

(
e−µx − eµx

)
. (1663)

The second boundary condition implies

0 = v′(`) + v(`) = c1

[
−µe−µ` − µeµ` + e−µ` − eµ`

]
=⇒ 0 = (1− µ)e−µ` − (1 + µ)eµ`︸ ︷︷ ︸

=:f(µ)

, (1664)

where we define f : R → R to be the underbraced quantity. Note the second equality holds since
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c1 6= 0 as the eigenfunction v is nontrivial. Now note f(0) = 0 and

f ′(µ) =
[
−e−µ` − eµ`

]
− µ(1− µ)e−µ` − µ(1 + µ)eµ` = −µ2

[
eµ` − e−µ`

]
− (1 + µ)

[
eµ` + e−µ`

]
< 0,

(1665)

where, since µ > 0, eµ` − e−µ` > 0. This implies f(µ) < f(0) = 0 for all µ > 0. This contradicts

(1664), from which we deduce no eigenfunctions exists for the given ODE with negative eigenvalues.

Finally, suppose λ > 0. Then the general solution v of the ODE is given by

v = c1 sin (αx) + c2 cos (αx) , (1666)

where α =
√
λ. The condition v(0) = 0 implies c2 = 0. The second condition implies

0 = c1 [sin(α`) + α cos(α`)] =⇒ α = − tan(α`), (1667)

where c1 6= 0 since v is an eigenfunction. Then set g(α) = α+tan(α`). Since limα→(kπ/2)− = +∞ and

limα→((k−1)π/2)+ = −∞ for each k ∈ N and g is continuous, it follows from the intermediate value

theorem that g has a root αk in each interval [(k − 1)π/2, kπ/2]. Consequently, there are infinitely

many positive eigenvalues.

�
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S08.2 Use the method of characteristics to solve the Eikonal equation (ux)2 + (uy)
2 = 1 with initial values

uΓ = 1 on the unit circle Γ = {(x, y) : x2 + y2 = 1}.

Solution:

Let Ω = {(x, y) ∈ R2 : x2 + y2 < 1}. Then Γ = ∂Ω. For notational convenience, for each (x, y) ∈ Ω we

write w = (x, y). Now define F (p, z, w) = |p|2 − 1. Then, using the method of characteristics and taking

p = Dw and z = u, we obtain the ODE system
ṗ(s) = −Fw − Fzp = 0, p(0) = p0

ẇ(s) = Fp = 2p, w(0) = w0

ż(s) = Fpp = 2|p|2 = 2, z(0) = 1.

(1668)

The above system implies z(s) = 2s + 1, w(s) = 2sp0 + w0, and p(s) = p0. Employing the use of

polar coordinates (r, θ) with the fact u = 0 on Γ, we see

0 =
∂u

∂θ
=
∂u

∂x

∂x

∂θ
+
∂u

∂y

∂y

∂θ
= ux(−r sin θ) + uy(r cos θ) = −uxy + uyx = p · q on Γ, (1669)

where q := (−y, x). Since w · q = −xy + xy = 0 and 0 = p · q on Γ, we have w · p = ±|p||w|. Then observe

for all w ∈ Ω

|w|2 = |2sp0 + w0|2 = 4s2|p0|2 + 4sp0 · w0 + |w0|2 = 4s2|p0|2 ± 4s|p0||w0|+ |w0|2 = 4s2 ± 4s+ 1, (1670)

where the third equality holds by our above argument and |p0| = 1 since F = 0 and |w0| = 1 since

initial points for the characteristics occur on the unit circle Γ. We now have two cases:

Case 1: |w|2 = 4s2 + 4s + 1. In this case, we see z2 = (2s + 1)2 = 4s2 + 4s + 1 = |w|2, which implies

u(x, y) =
√
x2 + y2 and we note the positive square root must be taken in order to satisfy the boundary

condition u = 1 on Γ.

Case 2: |w|2 = 4s2−4s+1. In similar fashion, in this case, we see |w|2 = 4s2−4s+1 = (2s−1)2 = (z−2)2,

which implies u(x, y) = 2−
√
x2 + y2.

The above two cases show two solutions to the PDE are u(x, y) =
√
x2 + y2 and u(x, y) = 2−

√
x2 + y2.

�
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S08.4. Solve the following IVP
utt + uxt +−20uxx = 0 in R× (0,∞),

u = φ on R× {t = 0},

ut = ψ on R× {t = 0}.

(1671)

Solution:

The given PDE may be “factored” as

(∂t + 5∂x) (∂t − 4∂x)u = 0 in R× (0,∞). (1672)

Set v(x, t) := (ut − 4ux)(x, t). Then

vt + 5ux = 0 in R× (0,∞). (1673)

Now let F (p, q, z, x, t) = q+ 5p. Using the method of characteristics, taking q = ut, p = ux, and z = u, we

then have F = 0 and obtain the ODE system
ẋ(s) = Fp = 5, x(0) = x0,

ṫ(s) = Fq = 1, t(0) = 0,

ż(s) = Fpp+ Fqq = 5p+ q = 0, z(0) = v(x0, 0).

(1674)

This implies s = t, z is constant along characteristics, and x = x0 + 5t. Thus

v(x, t) = z(s) = z(x0) = v(x0, 0) = v(x− 5t, 0) in R× (0,∞). (1675)

Setting f(x, t) := v(x− 5t, 0) and using our initial conditions, we see

f(x, t) = ut(x− 5t, 0)− 4ux(x− 5t, 0) = ψ(x− 5t)− 4φ(x− 5t). (1676)
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Consequently, we find the solution u satisfies


ut − 4ux = f(x, t) in R× (0,∞),

u = φ on R× {t = 0}.
(1677)

By linearity of the PDE, we may separate u and write u = w1 + w2 where


(w1)t − 4(w1)x = 0 in R× {t = 0},

w1 = φ on R× {t = 0},
(1678)

and 
(w2)t − 4(w2)x = f in R× {t = 0},

w2 = 0 on R× {t = 0}.
(1679)

Following the argument in the method of characteristics used for v, we deduce w1(x, t) = φ(x + 4t).

Now, using Duhamel’s principle and this knowledge of the transport equation, we know

w2(x, t) =

∫ t

0
f(x+ 4(t− s), s) ds

=

∫ t

0
ψ(x+ 4(t− s)− 5s)− 4φ′(x+ 4(t− s)− 5s) ds

= −1

9

∫ x−5t

x+4t
ψ(ξ)− 4φ′(ξ) dξ

=
4

9
[φ(x− 5t)− φ(x+ 4t)] +

1

9

∫ x+4t

x−5t
ψ(ξ) dξ.

(1680)

Compiling our results, we conclude

u(x, t) = w1(x, t) + w2(x, t)

= φ(x+ 4t) +
4

9
[φ(x− 5t)− φ(x+ 4t)] +

1

9

∫ x+4t

x−5t
ψ(ξ) dξ

=
4

9
φ(x− 5t) +

5

9
φ(x+ 4t) +

1

9

∫ x+4t

x−5t
ψ(ξ) dξ.

(1681)

�
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S08.6. Consider the differential equation

ut = −ε∆u+ ∆3u, (1682)

on the interval [0, 2π] with periodic boundary conditions. Find the largest value of ε0 so that the solution

of the PDE stays bounded as t −→∞, if ε < ε0. Justify your answer.

Solution:

Since u satisfies the PDE on [0, 2π] and is periodic, it may be expressed via

u(x, t) =
∑
k∈Z

û(k, t)eikx, (1683)

where each term û(k, t) is a Fourier coefficient. Transforming our PDE reveals, for each k ∈ Z,

ût(k, t) = −ε(ik)2û(k, t) + (ik)6û(k, t) =
[
εk2 − k6

]
û(k, t), (1684)

where we have used basic properties of the Fourier transform to replace the Laplacian terms. Integrating

with respect to t yields

û(k, t) = û(k, 0) exp
(
k2
[
ε− k4

]
t
)
, for all k ∈ Z. (1685)

Therefore,

u(x, t) =
∑
k∈Z

û(k, 0) exp
(
k2[ε− k4]t

)
· eikx. (1686)

The only term in the series that is not constant with respect to time is the middle term. Thus, in order

for u to remain finite as t −→∞, we must have

k2
[
ε− k4

]
≤ 0, for all k ∈ Z, (1687)

which is true precisely when

ε < k4, for all k ∈ Z− {0}. (1688)

The infimum of the right hand side of the inequality is obtained at k = 1, which gives k4 = 1. Thus, we

see the solution remains bounded as t −→∞, if ε < ε0, where ε0 := 1. �
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2008 Fall

F08.2 Let g : [0,∞) → R be a continuous function with g(0) = 0. Derive an integral formula for the

solution of the problem 
ut − uxx = 0 in R+ × (0,∞),

u = 0 on R+ × {t = 0},

u = g on {x = 0} × (0,∞),

(1689)

in terms of g.

Solution:

We first define an extension of u with domain R × (0,∞). Then we use Duhamel’s principle to obtain

the integral formula for this extension, which reduces to u in [0,∞)× [0,∞). Let us momentarily assume

g ∈ C1. We will use integration by parts to obtain a final expression that only requires continuity of g.

Set v(x, t) := u(x, t)− g(t) and

ṽ(x, t) :=


v(x, t) in [0,∞)× [0,∞),

−v(−x, t) in (−∞, 0)× [0,∞).

(1690)

Since v = 0 on {x = 0} × (0,∞), this odd extension ensures ṽ = 0 in {x = 0} × (0,∞). Then observe

ṽxx(x, t) =


vxx(x, t) = uxx(x, t) in [0,∞)× [0,∞),

−vxx(−x, t) = −uxx(−x, t) in (−∞, 0)× [0,∞),

(1691)

and

ṽt(x, t) =


vt(x, t) = ut(x, t)− g′(t) in [0,∞)× [0,∞),

−vt(−x, t) = −ut(−x, t) + g′(t) in (−∞, 0)× [0,∞),

(1692)

which implies ṽ satisfies 
ṽt − ṽxx = f(x, t) in R× (0,∞),

ṽ = 0 on R× {t = 0},

ṽ = 0 on {x = 0} × (0,∞),

(1693)

where
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f(x, t) :=


g′(t) in [0,∞)× [0,∞),

−g′(t) in (−∞, 0)× [0,∞).

(1694)

Duhamel’s principle asserts we can build a solution by writing

u(x, t) =

∫ t

0

∫
R

Φ(x− ξ, t− s)f(ξ, s) dξds, (1695)

where Φ is the fundamental solution of the heat equation given by

Φ(x, t) :=
1√
4πt

exp

(
−|x|

2

4t

)
. (1696)

Using the definition of Φ and f , we write

ṽ(x, t) =

∫ t

0

1√
4π(t− s)

[∫ ∞
0

g′(s) exp

(
−|x− ξ|

2

4(t− s)

)
dξ −

∫ 0

−∞
g′(s) exp

(
−|x− ξ|

2

4(t− s)

)
dξ

]
ds

=

∫ t

0

g′(s)√
4π(t− s)

∫ ∞
0

exp

(
−|x− ξ|

2

4(t− s)

)
− exp

(
−|x+ ξ|2

4(t− s)

)
dξds.

(1697)

From above, we know ṽ = u− g in [0,∞)× [0,∞). Hence

u(x, t) = g(t) +

∫ t

0

g′(s)√
4π(t− s)

∫ ∞
0

exp

(
−|x− ξ|

2

4(t− s)

)
− exp

(
−|x+ ξ|2

4(t− s)

)
dξds. (1698)

For s ∈ [0, t], letting

q(s) :=


1√

4π(t− s)

∫ ∞
0

exp

(
−|x− ξ|

2

4(t− s)

)
− exp

(
−|x+ ξ|2

4(t− s)

)
dξ if s ∈ [0, t),

0 if s = t,

(1699)

reveals
u(x, t) = g(t) +

∫ t

0
g′(s)q(s) ds

= g(t)−
∫ t

0
g(s)q′(s) ds+ [gq]ts=0

= g(t)−
∫ t

0
g(s)q′(s) ds+ g(t)q(t)− g(0)q(0)

= g(t)−
∫ t

0
g(s)q′(s) ds,

(1700)
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where the final line holds since q(t) = 0 and g(0) = 0. Note also the final line gives an expression

solely in terms of g, not including any of its derivatives. �
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F08.3. Consider the initial value problem for Burgers’ equation


ut + uxu = 0 in R× (0,∞),

u = g on R× {t = 0}.
(1701)

Find the entropy solution of this problem with the initial data

g(x) =


0 if x > 1,

1− x if x ∈ (0, 1),

1 if x < 0.

(1702)

Also find the maximum time interval [0, t∗0 on which the solution is continuous.

Solution:

We proceed by using the method of characteristics. Let F (p, q, z, x, t) := q + pz. Then taking q = ut,

p = ux, and z = u yields F = 0 and gives rise to the ODE system
ẋ(s) = Fp = z x(0) = x0,

ṫ(s) = Fq = 1 t(0) = 0,

ż(s) = Fpp+ Fqq = zp+ q = 0 z(0) = g(x0).

(1703)

This implies t = s, z is constant along characteristics, and

x(t) = tz(0) + x0 = tg(x0) + x0 =


x0 if x0 > 1,

t(1− x0) + x0 if x0 ∈ (0, 1),

1 + x0 if x0 < 0.

(1704)

Written more concisely, we have

x =


x0 if x0 > 1,

(1− t)x0 + t if x0 ∈ (0, 1),

1 + x0 if x0 < 0.

(1705)
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Thus the initial characteristics are vertical in the (x, t) plane for x0 > 1 and have slope 1 for x0 ≤ 0.

For time t ∈ (0, 1) and x0 ∈ (0, 1), we see each characteristic is a line segment originating at (x0, 0) and

intersecting (1, 1). Thus, the characteristics crash at time t∗ = 1, and so the maximum time interval [0, t∗)

on which the solution is continuous occurs when t∗ = 1.

We now identify u for t ∈ [0, 1). If x > 1, then the fact the characteristics are vertical there and g = 0

for x > 1 implies u = 0. Similarly, if x − t < 0, then the origin of the characteristic was at a point

x0 = x− t < 0, for which g(x0) = 1, and so u = 1 in such a case. In the final case, where t ≤ x ≤ 1, we see

x = (1− t)x0 + t =⇒ x0 =
x− t
1− t

=⇒ g(x0) = 1− x0 = 1− x− t
1− t

=
1− x
1− t

. (1706)

Compiling these results reveals, for (x, t) ∈ R× [0, 1),

u(x, t) =


0 if x > 1,

1 if x < t,

1− x
1− t

if t ≤ x < 1.

(1707)

To obtain the entropy solution for t ≥ 1, we apply the Rankine-Hugenoit condition to get that the shock

curve parameterized as (s(t), t) satisfies (s(1), 1) = (1, 1) and

ṡ(t) =
f(u`)− f(ur)

u` − ur
=

1
2 · 1

2 − 1
2 · 0

2

1− 0
=

1

2
, (1708)

where f(u) := u2/2 and u` = 1 and ur = 0 are the limiting values approaching the shock from the left and

the right, respectively. Thus

s(t) =
1 + t

2
, (1709)

and, for (x, t) ∈ R× (1,∞),

u(x, t) =


1 if x < (1 + t)/2,

0 if x > (1 + t)/2.

(1710)

Together (1707) and (1710) identify u(x, t), as desired. �
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F08.6. Consider the first order system of equations

ut +

n∑
j=1

Ajuxj = 0, (1711)

where u : Rn × [0,∞)→ R
m, and the Aj ’s are symmetric m×m matrices with constant real entries. Use

an energy argument to show that the domain of dependence of (x0, t0), t0 > 0, for a solution of the system

above is contained in the cone

{|x− x0| ≤ Λ(t0 − t)} , (1712)

where

Λ := max
‖ξ‖=1,1≤`≤m

|λ`(ξ)‖, (1713)

and, for ` = 1, . . . ,m, λ`(ξ) is the `-th eigenvalue of the matrix A(ξ) :=
∑n

j=1 ξjAj .

Solution:

Fix (x0, t0) ∈ Rn × (0,∞) and define S(t) via

S(t) := B(x0,Λ(t0 − t)), for all t ∈ [0, t0), (1714)

and S(t0) := {x0}. Then observe the cone in (1712) may be expressed as

K(x0, t0) := {(x, t) : x ∈ S(t), t ∈ [0, t0]} = {|x− x0| ≤ Λ(t0 − t)} . (1715)

In order to verify the domain of dependence assertion, it suffices to show that if u(·, 0) = 0 in S(0) ⊆

K(x0, t0), then u = 0 in K(x0, t0). Suppose u = 0 in S(0) and define the energy E : [0, t0)→ R by

E(t) :=
1

2

∫
S(t)
|u(x, t)|2 dx, (1716)

and note E(0) = 0 by our assumption. Differentiating in time reveals

Ė(t) =

∫
S(t)

u · ut dx+
1

2

∫
∂S(t)

|u|2v · ν dσ, (1717)

where v = −Λν is the Eulerian velocity of the boundary and ν is the outward normal along ∂S(t). This
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implies

Ė(t) = −
∫
S(t)

u ·
n∑
j=1

Ajuxj dx− Λ

2

∫
∂S(t)

|u|2 dσ. (1718)

Integrating by parts for a fixed j ∈ [n] yields

−
∫
S(t)

u ·Ajuxj dx =

∫
S(t)

uxj ·Aju dx+

∫
∂S(t)

(u ·Au)νj dσ

=

∫
S(t)

Ajuxj · u dx+

∫
∂S(t)

(u ·Au)νj dσ,

(1719)

where the final line holds since Aj is symmetric. Using the symmetry of the dot product reveals

−
∫
S(t)

u ·Ajuxj dx =
1

2

∫
∂S(t)

(u ·Au)νj dσ. (1720)

Combining (1718) and (1720) yields

Ė(t) =
1

2

∫
∂S(t)

u ·
n∑
j=1

νjAju− Λ|u|2 dσ =
1

2

∫
∂S(t)

u ·A(ν)u− Λ|u|2 dσ ≤ 1

2

∫
∂S(t)

Λ|u|2 − Λ|u|2 dσ = 0,

(1721)

where the inequality holds by our choice of Λ. Since the integrand in the definition of E(t) is nonnegative,

it follows that E(t) ≥ 0 for all t ∈ [0, t0). Combined with the facts that E is nonincreasing and E(0) = 0,

we deduce E(0) = 0 for all t ∈ [0, t0).

The above result shows u(·, t) = 0 in S(t) for all t ∈ [0, t0) (since otherwise E would be positive at some

t ∈ [0, t0)). In particular, u(x0, t) = 0 for all t ∈ [0, t0). Together with the continuity of u, this implies

u(x0, t0) = lim
t→t−0

u(x0, t) = lim
t→t−0

0 = 0. (1722)

Whence u = 0 in K(x0, t0), as desired. This completes the proof. �
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F08.7. Suppose u is a smooth solution of the following problem
uxxt + uxx − u3 = 0 in [0, 1]× (0,∞),

u = 0 on ∂[0, 1]× (0,∞),

u = x(x− 1) on [0, 1]× {t = 0}.

(1723)

Derive a differential inequality for w(t) :=
∫ 1

0 (ux)2(x, t) dx and show u uniformly tends to zero as t −→∞.

Solution:

First observe, using the given PDE and integration by parts,

ẇ(t) = 2

∫ 1

0
uxuxt dx= −2

∫ 1

0
uuxxt dx = −2

∫ 1

0
u(u3 − uxx) dx= −2

∫ 1

0
u4 − uuxx dx, (1724)

where the boundary terms cancel since u = 0 on ∂[0, 1]× (0,∞). Since −u4 ≤ 0, it follows that

ẇ(t) ≤ −2

∫ 1

0
u2
x dx= −2w(t). (1725)

Then, using Grownwall’s inequality, we deduce

w(t) ≤ w(0) exp

(∫ t

0
−2 dt̃

)
= w(0) exp (−2t) . (1726)

Given our initial data, we see

w(0) =

∫ 1

0
[∂x(x(x− 1))]2 dx=

∫ 1

0
[2x− 1]2 dx =

∫ 1

0
4x2 − 4x+ 1 dx=

4

3
− 2 + 1 =

1

3
. (1727)

This implies we have the differential inequality

w(t) ≤ 1

3
· exp (−2t) . (1728)
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With this inequality, we see for (x, t) ∈ (0, 1)× (0,∞)

|u(x, t)| =
∣∣∣∣∫ x

0
ux(ξ, t) dξ

∣∣∣∣ ≤ ∫ 1

0
|ux(ξ, t)| dξ ≤

(∫ 1

0
12 dξ

)1/2

w(t)1/2 =
1√
3

exp(−t). (1729)

The first inequality holds by the triangle inequality and the fact x ≤ 1. The second inequality is a special

case of Hölder’s inequality. Because we obtained the inequality in (1729) and u = 0 on ∂[0, 1]× (0,∞), it

follows that

‖u(·, t)‖L∞([0,1]) ≤
1√
3

exp(−t). (1730)

Whence

0 ≤ lim
t→∞
‖u(·, t)− 0‖L∞([0,1]) ≤ lim

t→∞

1√
3

exp(−t) = 0, (1731)

and so by the squeeze lemma we conclude u tends to zero uniformly as t −→∞, as desired. �
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F08.8. Suppose that q(x) is a real-valued continuous function such that
∫ 1

0 q(x) dx = 0, but q(x) is not

identically zero. Show that Lu = −u′′ + qu with the boundary conditions u′(0) = u′(1) = 0 must have a

strictly negative eigenvalue by showing that
∫ 1

0 uLu dx can be negative.

Solution:

Taking p = 1, we see the eigenvalue may be expressed via
Lu = −(pu′)′ + qu = λu in (0, 1),

0 · u(0) + 1 · u′(0) = 0,

0 · u(1) + 1 · u′(1) = 0,

(1732)

which is in regular Sturm-Liouville form. Whence, by Sturm-Liouville theory, the smallest eigenvalue

λ for this problem satisfies

λ = min
u∈A

〈u, Lu〉
〈u, u〉

, (1733)

where 〈·, ·〉 is the L2 scalar product on (0, 1) and A := {u ∈ C2(0, 1) ∩ C1[0, 1] : u′(0) = u′(1) = 0}. Let

v ∈ A be any function satisfying
∫ 1

0 vq dx 6= 0, which is possible through our hypothesis concerning q.

Then choose α ∈ R such that

〈v, Lv〉+ 2α

∫ 1

0
qv dx < 0, (1734)

which can be done since α is multiplied by a nonzero quantity. Observe

〈v + α,L(v + α)〉 = 〈v, Lv〉+ 〈v, Lα〉+ 〈α,Lv〉+ 〈α,Lα〉 , (1735)

and

〈α,Lα〉 =

∫ 1

0
α(0 + qα) dx = α2

∫ 1

0
q dx = 0,

〈v, Lα〉 =

∫ 1

0
v(0 + qα) dx = α

∫ 1

0
qv dx,

〈α,Lv〉 = α

∫ 1

0
−v′′ + qv dx = α

∫ 1

0
qv dx+ [1 · (−v′)]10 = α

∫ 1

0
qv dx,

(1736)

where the final line follows from integration by parts with the boundary conditions. This implies

〈v + α,L(v + α)〉 = 〈v, Lv〉+ 2α

∫ 1

0
qv dx < 0, (1737)
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where the final inequality holds by (1734). By our choice of v, we know v is not constant, which implies

v + α is not identically zero, and so

〈v + α, v + α〉 > 0 =⇒ λ = min
u∈A

〈u, Lu〉
〈u, u〉

≤ 〈v + α,L(v + α)〉
〈v + α, v + α〉

< 0. (1738)

Whence the eigenvalue problem admits an eigenfunction solution with negative eigenvalue. �

Remark: The solution above does not provide any insight into why we might know to take this approach.

This is explained as follows. First, (1733) is straightforward to obtain. Since λ equals the minimum value

of the shown fraction over all choices of u, it suffices to find a particular choice of u for which the given

fraction is negative. The simplest function that satisfies the boundary conditions is a constant function.

This is why we need to choose α. Then, in order to utilize the fact q is not identically zero, we also must

introduce a second term v ∈ A to get that
∫ 1

0 qv dx 6= 0. We then want 〈v + α,L(v + α)〉 < 0. Expanding

this out reveals the condition we seek for α. 4
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2007 Fall

F07.1 Let φ be continuous and bounded inRn. Assume lim|x|→∞ φ(x) = φ0. Consider the Cauchy problem


ut −∆u = 0 in Rn × [0,∞),

u = φ on Rn × {t = 0}.
(1739)

Prove that limt→∞ u(x, t) = φ0.

Solution:

Since u is a solution to the heat equation, its integral representation is given by the convolution

u(x, t) =
1

(4πt)n/2

∫
Rn

φ(ξ) exp

(
−|x− ξ|

2

4t

)
dξ =

1

πn/2

∫
Rn

φ
(
z
√

4t+ x
)

exp
(
−|z|2

)
dz, (1740)

where the final equality holds by using the change of variables to z = (ξ−x)/
√

4t so that dz = dξ/(4t)n/2.

Since φ is bounded by some M > 0,

∫
Rn

φ(x+
√

4tz) exp(−|z|2) dz ≤M
∫
Rn

exp(−|z|2) dz = Mπn/2. (1741)

This shows the integrand is dominated by an integrable function, and so the dominated convergence

theorem may be applied. Indeed, for each fixed x ∈ Rn, it follows that

lim
t→∞

u(x, t) = lim
t→∞

1

πn/2

∫
Rn

φ
(
x+
√

4tz
)

exp
(
−|z|2

)
dz

=
1

πn/2

∫
Rn

lim
t→∞

φ
(
x+
√

4tz
)

exp
(
−|z|2

)
dz

=
φ0

πn/2

∫
Rn

exp
(
−|z|2

)
dz

=
φ0

πn/2
· πn/2

= φ0,

(1742)

as desired. The dominated convergence theorem may be applied to obtain the second line, bringing the

limit inside the integrand. The third line holds since as t −→ ∞ the norm of the argument of φ in the

second line also goes to infinity. This completes the proof. �
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F07.2. Let Ai(x) for i = 1, 2 be smooth functions in a bounded domain Ω ⊂ Rn such that A1 = A2 on

∂Ω. Assume that

∆A1 +
n∑
j=1

(
∂A1

∂xj

)2

= ∆A2 +
n∑
j=1

(
∂A2

∂xj

)2

(1743)

Solution:

Set w := A1 −A2 so that 
∆w = ‖DA2‖2 − ‖DA1‖2 in Ω,

w = 0 on ∂Ω.

(1744)

It suffices to show w = 0 in Ω. Since Ω is bounded and (A1 + A2)x1 is smooth on Ω, it follows that

this expression takes on its supremum. Thus, we may set

λ := 2 ·
∣∣∣∣max
x∈Ω

(A1 +A2)x1

∣∣∣∣ . (1745)

Now let ε > 0 and set v(x) := w(x) + ε exp(λx1). Observe that

∆w = (DA2 −DA1) · (DA2 +DA1) = −Dw · (DA2 +DA1), (1746)

and so

∆v(x) = ∆w(x) +λ2ε exp(λx1) = − (Dv(x)− λ exp(λx1)ê1) · (DA2(x) +DA1(x)) +λ2ε exp(λx1), (1747)

where ê1 = (1, 0, . . . , 0) ∈ Rn. Since v is smooth over Ω, it attains its supremum. By way of contradiction,

suppose v attains its max at a point z ∈ Ω in the interior. This implies, at z, Dv = 0 and

0 ≥ ∆v = − (0− ελ exp(λz1)ê1) · (DA2 +DA1) + λ2ε exp(λz1)

= ελ exp (λz1) [(A1 +A2)x1 + λ]

> 0,

(1748)

where we note ελ exp(λz1) > 0 and λ > (A1 + A2)x1 , by (1745). This implies 0 > 0, a contradiction.

Therefore, v attains its maximum along the boundary. Because Ω is bounded, there exists M > 0 such
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that exp(λx1) < M for all x ∈ Ω. Whence

0 = max
x∈∂Ω

w(x) ≤ max
x∈Ω

w(x) ≤ max
x∈Ω

w(x) + ε exp(λx1) = max
x∈Ω

v(x) = max
x∈∂Ω

v(x) ≤ max
x∈∂Ω

εM = εM. (1749)

This implies

0 ≤ max
x∈Ω

w(x) ≤ εM. (1750)

Letting ε −→ 0+ reveals max
Ω

w = 0, and so w ≤ 0 in Ω. Note the above argument can be repeated with

w̃ := A2 −A1 to deduce that −w = w̃ ≤ 0 in Ω. Therefore, w = 0 in Ω and the proof is complete. �
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F07.5. Consider the initial value problem


u′(t) = cu1+α,

u(0) = 0.

(1751)

where c > 0, α > 0, and u0 ∈ (0, 1).

a) Find the solution of this ODE.

b) Find the blowup time t∗ at which u −→ +∞.

c) Find the value of α that minimizes t∗ for fixed values of c and u0.

Solution:

a) Observe this DOE is separable, and so

∫ u

u0

dũ

ũ1+α
=

∫ t

0
c dt̃ =⇒ −α−1

[
u−α − u−α0

]
= ct =⇒ u =

[
u−α0 − αct

]−1/α
. (1752)

b) We claim t∗ = (cαuα)−1. Indeed, for this choice of t∗,

lim
t→t−∗

u(t) = lim
t→t−∗

[
u−α0 − αct

]−1/α
= (αc)−1/α lim

t→t−∗

1

(t∗ − t)1/α
= +∞. (1753)

c) We seek α? that minimizes the expression (cαuα)−1. Since the logarithm function is strictly increasing,

this is equivalent to finding the α? that minimizes f : R→ R defined by

f(α) := ln
(
cα−1u−α0

)
= ln(c) + ln

(
α−1

)
+ ln

(
u−α0

)
= ln(c)− ln(α)− α ln(u0). (1754)

Through differentiation, we see α? satisfies

0 = f ′(α?) = 0− 1

α?
− ln(u0) =⇒ α? = − 1

ln(u0)
. (1755)

Since u0 ∈ (0, 1), we know ln(u0) < 0, and so α? > 0, as desired. Lastly, since

f ′′(α?) =
d

dα

[
−α−1 − ln(u0)

]
α=α? =

1

(α?)2
> 0, (1756)

it follows from the second derivative test that α? is, in fact, a local minimizer.

�
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2007 Spring

S07.1. Consider a minimizer u of the energy

E(u) :=
1

2

∫
Ω

(f − u)2 + λ(∆u)2 dx, (1757)

where both u and f are periodic on the 2-torus Ω.

a) Show the Euler-Lagrange equation for u is −(f − u) + λ∆2u = 0.

b) Compute a solution of this problem in terms of a Fourier series expansion.

c) Discuss how the high frequency modes depend on the value of λ, which imparts smoothing to u.

Solution:

a) For each test function v with v = 0 on ∂Ω we see

δE(u, v) = lim
ε→0+

1

ε
[E(u+ εv)− E(u)]

= lim
ε→0+

1

ε

[
1

2

∫
Ω

(f − u− εv)2 + λ(∆u+ ε∆v)2 dx− 1

2

∫
Ω

(f − u)2 + λ(∆u)2 dx

]
= lim

ε→0+

1

ε

[
1

2

∫
Ω
−2εv(f − u) + ε2v2 + 2λε∆u∆v + λε2(∆v)2 dx

]
= lim

ε→0+

[∫
Ω
−(f − u)v + λ∆u∆v dx+ ε

∫
Ω
v2 + λ(∆v)2 dx

]
=

∫
Ω
−(f − u)v + λ∆u∆v dx

=

∫
Ω

(
−(f − u) + λ∆2u

)
v dx,

(1758)

where the final equality holds via integration by parts twice and utilizing the fact v = 0 on ∂Ω.

Since this holds for all the test functions, it follows that

0 = −(f − u) + λ∆2u in Ω, (1759)

as desired.

b) Assume u and f are 2π periodic. Then we take the Fourier transform of the Euler-Lagrange equation
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to find that for each (m,n) ∈ Z2,

0 = −
(
f̂(m,n)− û(m,n)

)
+ λ∆̂2u

= −f̂(m,n) + û(m,n) + λ(m2 + n2)∆̂u

= −f̂(m,n) +
(
1 + λ(m2 + n2)2

)
û(m,n).

(1760)

Then solving for each coefficient û(m,n) and recalling for each x and y we have

u(x, y) =
∑

(m,n)∈Z2

û(m,n)ei(mx+ny), (1761)

we deduce

u(x, y) =
∑

(m,n)∈Z2

f̂(m,n)

1 + λ(m2 + n2)2
ei(mx+ny). (1762)

c) Smoothness of u corresponds to rapid decay of its Fourier coefficients as m and n get large. From

(1762), we see, as λ becomes large, the coefficients for larger m and n become smaller. This implies

u becomes increasingly smooth as λ −→∞.

�
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S07.2. Find all solutions to the boundary value problem ∆u = x in x2 +y2 < 1, ∂u/∂r = y on x2 +y2 = 1.

Solution:

Set Ω := {(x, y) ∈ R2 : x2 + y2 < 1}. Our PDE becomes, using polar coordinates,


urr + 1

rur +
1

r2
uθθ = ∆u = r cos θ in Ω,

ur = sin θ on ∂Ω,

(1763)

By linearity of the PDE, we assume u = v + w where


∆v = 0 in Ω,

vr = sin θ on ∂Ω,

and


∆w = r cos θ in Ω,

wr = 0 on ∂Ω.

(1764)

We solve for v using separation of variables, i.e., we assume v(r, θ) = f(r)g(θ) so that

0 = g(θ)

[
f ′′(r) +

1

r
f ′(r)

]
+

1

r2
f(r)g′′(θ) =⇒ r

f(r)

[
rf ′′(r) + f ′(r)

]
= −g

′′(θ)

g(θ)
, (1765)

Since the variables on the right and left hand sides are independent of one another, there exists λ ∈ R

such that

g′′(θ) + λg(θ) = 0 =⇒ g(θ) = A sin(λθ) +B cos(λθ). (1766)

From the boundary condition in (1764), we deduce A = 1, B = 0, and λ = 1. Thus,

r2f ′′(r) + rf ′(r)− f(r) = 0, (1767)

which implies f(r) is of the form xm and yields

0 = m(m− 1) +m− 1 = m2 − 1 =⇒ m = ±1. (1768)

With the boundary condition in (1764), it follows that m = 1. Compiling our results, we see

v(r, θ) = r sin(θ). (1769)
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Similarly, assuming w = φ(r)γ(θ), we immediately see the ansatz γ(θ) = cos θ. This implies

r2φ′′(r) + rφ′(r)− φ(r) = r3, (1770)

for which we assume a particular solution φ is given by ar3 + br2 + cr + d. Then

r3 = r2(6ar + 2b) + r(3ar2 + 2br + c)− (ar3 + br2 + cr + d) =⇒ 0= r3(8a− 1) + r2(3b) + +d, (1771)

from which equating coefficients reveals b = d = 0, and a = 1/8. Using the fact φr(1) = 0, we know

0 = φr(1) =
[
3ar2 + 2br + c

]
r=1

=

[
3

8
+ 0 + c

]
=⇒ c = −3

8
. (1772)

Compiling our results, we obtain

u(r, θ) = v(r, θ) + w(r, θ) = r sin(θ) +
r3 − 3r

8
· cos θ, (1773)

and so

u(x, y) = y +
(x2 + y2)x

8
− 3x

8
. (1774)

We were asked to find all solutions, and we claim every other solution ũ to the PDE differ from u only by

a constant. Indeed, setting q := u− ũ yields ∆q = 0 in Ω and qr = 0 on ∂Ω, and so

0 =

∫
Ω
q∆q dx = −

∫
Ω
|Dq|2 dx+

∫
Ω
q
∂q

∂n
dσ = −

∫
Ω
|Dq|2 dx, (1775)

where the final equality holds since the normal vector n is radial along ∂Ω and qr = 0. This implies Dq is

zero in Ω, from which our claim follows. This completes the proof. �
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S07.4. Suppose that ∆u = 0 in a bounded domain D and that u ∈ C3(D). Show that |∇u|2 takes its

maximum value in D on the boundary of D.

Solution:

For each x ∈ D, set v(x) := |∇u(x)|2 and observe

∆v = ∆|∇u|2 =

n∑
i=1

∂xixi

 n∑
j=1

u2
xj

 = 2

n∑
i=1

uxiuxixixi + (uxixi)
2 = 2Du ·D(∆u) + 2

n∑
i=1

(uxixi)
2 ≥ 0,

(1776)

where the final inequality holds since ∆u = 0 in D and the terms in the summation are nonnegative. Thus

v is subharmonic.

Because D ⊂ Rn is closed and bounded, it is compact. Since v ∈ C2(D), it attains its supremum. Now let

ε > 0 and set vε := v + ε|x|2, and note vε is continuous on U . By way of contradiction, suppose vε attains

its maximum at an interior point z ∈ int(U). This implies

0 ≥ ∆vε(z) =

[
n∑
i=1

∂xixi
(
v(x) + ε|x|2

)]
x=z

= ∆v(z) + 2nε > 0, (1777)

where the final inequality holds since ε > 0 and ∆v(z) ≥ 0. This implies 0 > 0, a contradiction. Conse-

quently, max
U

vε = max
∂U

vε. Then observe

max
U

v ≤ max
x∈U

(
v(x) + ε|x|2

)
= max

x∈U
vε(x) = max

x∈∂U
vε(x) = max

x∈∂U

(
v(x) + ε|x|2

)
. (1778)

Since U is bounded, there is M > 0 such that |x|2 ≤M for all x ∈ U . Thus

max
U

v ≤ max
x∈∂U

v(x) + ε|x|2 ≤
(

max
∂U

v

)
+ εM. (1779)

Letting ε −→ 0, we deduce max
U

v ≤ max
∂U

v. And, because ∂U ⊂ U , max
U

v ≥ max
∂U

v. Combining our

inequalities, we conclude v = |∇u|2 takes its maximum value in D on the boundary of D. �
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S07.5. Consider the equation


ut + (u2)x = au2 in R× (0,∞),

u = g on R× {t = 0},
(1780)

where a > 0 and

g(x) =


0 if |x| > 1,

1 + x if −1 < x < 0,

1− x if 0 < x < 1.

(1781)

a) Solve this problem by the method of characteristics to get functions w(y, t) and x(y, t) such that

the solution u(x, t) must satisfy u(x(y, t), t) = w(y, t). To really find u(x, t) you would have to solve

x = x(y, t) for y(x, t), but do not attempt to do that.

b) The functions w(y, t) and x(y, t) will not exist for all t ≥ 0 and y ∈ R. Find t?, the largest number

such that w(y, t) is finite for 0 ≤ t < t? for all y ∈ R.

c) Will it be possible to solve for x = x(y, t) for y(x, t) for all t in the interval [0, t?)? Explain your

answer.

Solution:

a) We proceed by using the method of characteristics. Let F (p, q, z, x, t) = q+2zp−az2. Taking p = ux,

q = ut, and z = u yields F = 0 and gives rise to the ODE system
ẋ(s) = Fp = 2z, x(0) = x0,

ṫ(s) = Fq = 1, t(0) = 0,

ż(s) = Fpp+ Fqq = 2zp+ q = az2, z(0) = g(x0).

(1782)

This implies t = s and, using separation of variables,

∫ z

g(x0)

dζ

ζ2
=

∫ t

0
aτdτ =⇒ 1

g(x0)
− 1

z
= at =⇒ z =

1
1

g(x0) − at
. (1783)
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Following the notation of the prompt, set

w(y, t) :=
1

1
g(y) − at

. (1784)

Then

x = x0 +

∫ t

0
ẋ(τ) dτ

= x0 +

∫ t

0

2
1

g(x0) − aτ
dτ

= x0 −
2

a

∫ t

0

−adτ
1

g(x0) − aτ

= x0 −
2

a

(
ln

(
1

g(x0)
− at

)
− ln

(
1

g(x0)

))
.

(1785)

Likewise to above, taking y = x0, we see

x = x(y, t) = y − 2

a

(
ln

(
1

g(y)
− at

)
− ln

(
1

g(y)

))
= y − 2

a
ln (1− atg(y)) . (1786)

from which we obtain u(x(y, t), t) = w(y, t).

b) We seek to t? such that 1/g(y)− at? ≥ 0 for all y ∈ R, with t? as large as possible. We assume this

equality holds whenever g(y) = 0, in which case we assume 1/g(y) = +∞ since g is always nonnegative

and positive somewhere. Observe

argmin
y

1

ag(y)
= argmax

y
g(y). (1787)

Of course, 0 ≤ g(y) ≤ 1 for all y, with the final equality strict precisely when y = 0. Consequently,

t? = inf
y

1

ag(y)
=

1

ag(0)
=

1

a
. (1788)

c) No, it will not be possible. We verify this claim by showing two characteristics crash together before

time t? = 1/a. Consider two characteristics that originate at α1, α2 ∈ (0, 1) with α1 6= α2. ....

(Return and complete.)

�
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S07.7.

a) Suppose a(x) is a smooth function (continuous of all order) which vanishes for |x| > R. If the

derivative of φ(x) does not vanish for |x| ≤ R, show that

F (k) =

∫
R

eikφ(x)a(x) dx (1789)

satisfies |F (k)| ≤ CNk−N for all N ∈ N for some sequence of constants CN .

b) Consider the solution to ∆u+ k2u = 0 given by

u(x, y, k) =

∫
R

exp (ik [x sin(α)− y cos(α)− α]) a(α) dα, (1790)

where a(α) is as in part a). Show that |u(x, y, k)| ≤ CNk−N for all N on x2 + y2 < 1.

c) Suppose that a(α) = 0 for |α| > π. Show that

u(1, 0, k) =
a(0)

k1/3

∫
R

exp

(
− iη

3

6

)
dη +O(k−2/3) as k −→∞. (1791)

Solution:

a) Differentiating yields

d

dx
[exp(ikφ(x))] = ikφ′(x) exp(ikφ(x)) =⇒ exp(ikφ(x)) =

1

ikφ′(x)
[exp(ikφ(x))]′ . (1792)

Then integrating by parts, we find

F (k) =

∫
B(0,R)

1

ikφ′(x)
[exp(ikφ(x))]′ a(x) dx = − 1

ik

∫
B(0,R)

exp(ikφ(x)) ·
[
a(x)

φ′(x)

]′
dx, (1793)

where the boundary term vanishes since a(x) = 0 for |x| ≥ R. Note the right hand side is also

well-defined since φ does not vanish in the domain. However,∣∣∣∣∣− 1

ik

∫
B(0,2R)

exp(ikφ(x)) ·
[
a(x)

φ′(x)

]′
dx

∣∣∣∣∣ ≤ 1

k
‖(a/φ′)′‖

L∞(B(0,2R))
, (1794)
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where we note (a/φ′)′ is smooth on the compact set B(0, R), and so the supremum is finite. Setting

C1 := ‖(a/φ′)′‖
L∞(B(0,R))

, we see |F (k)| ≤ C1k
−1.

Proceeding inductively, we may make repeated used of (1792) and integration by parts. Suppose we

apply this N times for some N ∈ N. Then there the factor in front of the integral in (1793) will be

replaced with (−1/ik)N and the right hand term will become [a/φ′](N), i.e., it will be differentiated

N times. Also, all the boundary terms will vanish, by the same reasoning as before. Furthermore,

the denominator of the expanded expression for [a/φ′](N) will only have terms that are multiples of

φ′, and so the entire expression for the derivative is well-defined and smooth in B(0, R). So, in this

case, we set

CN := ‖(a/φ′)(N)‖
L∞(B(0,R))

. (1795)

Choosing the constants in this way for all N implies

|F (k)| ≤ CNk−N , for all N ∈ N, (1796)

as desired.

b) Set φ(α) := x sinα− y cosα− α. Then φ is smooth (differentiable of all orders) and, from our result

in a), it suffices to show φ′(α) 6= 0 whenever x2 + y2 < 1. Indeed, in this case,

φ′(α) = x cos(α) + y sin(α)− 1

= 〈(x, y), (cos(α), sin(α))〉 − 1

≤ ‖(x, y)‖‖(cos(α), sin(α))‖ − 1

=
√
x2 + y2 ·

√
cos2(α) + sin2(α)− 1

< 1 · 1− 1

= 0.

(1797)

The second line follows from rewriting the first terms as the dot product of two vectors in R
2.

Then the third line follows from the Cauchy Schwarz inequality, and the fifth line since x2 + y2 < 1.

Thus, φ′(α) < 0 in x2 +y2 < 1. So, a) can be applied to assert there exists a sequence {CN}N∈N such
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that |u(x, y, k)| ≤ CNk−N for all N ∈ N and x2 + y2 < 1.

c) First observe

u(1, 0, k) =

∫ π

−π
exp (ik [sin(α)− α]) a(α) dα. (1798)

In a neighborhood of the origin, we see

exp(ik[sin(α)− α]) = exp

(
ik

[
−α

3

6
+O(α5)

])
= exp

(
− ikα

3

6

)(
1 +O(α5)

)
, as α −→ 0, (1799)

where we use the expansion of the exponential and the fact ecd = eced to obtain the final equality.

This implies that, as α −→ 0,

exp (ik [sin(α)− α]) a(α) = exp

(
− ikα

3

6

)(
1 +O(α5)

)
a(α)

= exp

(
− ikα

3

6

)(
1 +O(α5)

) (
a(0) + a′(0)α+O(α2)

)
= exp

(
− ikα

3

6

)
(a(0) +O(α)) .

(1800)

Let δ∗ > 0 be the radius of convergence of the Taylor series for the left hand side of (1800) and

set δ := min{δ∗, π}. Then

u(1, 0, k) =

∫ δ

−δ
exp (ik [sin(α)− α]) a(α) dα+

∫ −δ
−π

exp (ik [sin(α)− α]) a(α) dα

+

∫ π

δ
exp (ik [sin(α)− α]) a(α) dα

≤
∫ δ

−δ
exp (ik [sin(α)− α]) a(α) dα+

C

k
,

(1801)

for some C > 0. The final inequality holds from our result in a), noting that

d

dα
[sin(α)− α] = cos(α)− 1 < 0, for all α ∈ [−π, π]\(−δ, δ). (1802)
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We seek an integral over all the reals, not just [−δ, δ]. So observe, following the trick in (1792),

∣∣∣∣∫ ∞
δ

α exp

(
− ikα

3

6

)
dα

∣∣∣∣ =

∣∣∣∣− 1

ik

∫ ∞
δ

exp

(
− ikα

3

6

)
·
[ α
α2

]′
dα

∣∣∣∣
=

∣∣∣∣ 1

ik

∫ ∞
δ

exp

(
− ikα

3

6

)
α−2

∣∣∣∣
≤ 1

k

∫ ∞
δ

α−2 dα

= −1

k

[
α−1

]∞
δ

=
δ

k
.

(1803)

This implies ∫ ∞
δ

α exp

(
− ikα

3

6

)
dα = O(1/k), as k −→∞. (1804)

Likewise, ∫ −δ
−∞

α exp

(
− ikα

3

6

)
dα = O(1/k), as k −→∞. (1805)

Thus, ∫ δ

−δ
exp (ik [sin(α)− α]) a(α) dα =

∫ δ

−δ
exp

(
− ikα

3

6

)
(a(0) +O(α)) dα

=

∫ δ

−δ
exp ()

(1806)

(THERE IS AN ERROR IN HERE.)

Thus, compiling the results of ??, we see

u(1, 0, k) =
a(0)

k1/3

∫
R

exp

(
− iη

3

6

)
dη +O(k−2/3 + 1/k), as k −→∞. (1807)

Since k−2/3 + 1/k = O(k−2/3) as k −→∞, the proof is complete.

�
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S07.8. The porous media equation in Rn is

ut = ∆um, m > 1. (1808)

Consider a similarity solution of the form t−αU(x/tβ), where U is nonnegative.

a) Compute the values of α and β, depending on the dimension of the space. (hint: the PDE conserves∫
Rn u(x, t) dx.)

b) Show that U(η) satisfies an elliptic PDE of the form

C1U + C2η · ∇U + ∆(Um) = 0. (1809)

Compute C1 and C2 in terms of α and β.

c) Find a family of radially symmetric solutions of the PDE in b). Use the fact that for radially

symmetric f(r), ∇f = frr̂ and ∆f = frr + n−1
r fr, where r̂ is the unit vector pointing outward from

the origin, and n is the dimension of the space.

d) Find the special solution with unit mass, i.e.,
∫
u(x, t) dx = 1.

Solution:

a) Since the mass is conserved we have

0 =
d

dt

[∫
Rn

t−αU(xt−β) dx

]
=

d

dt

[∫
Rn

t−αg(y)tnβ dy

]
=

d

dt

[
t−α+nβ

] ∫
Rn

g(y) dy

= (βn− α)tβn−α−1

∫
Rn

g(y) dy,

(1810)

where y = xt−β. Assuming u is not the trivial solution, the integral is positive since g is nonne-

gative. And, because this holds for all t ∈ (0,∞), it follows that

α = nβ. (1811)
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Differentiating in time reveals

ut(x, t) =
d

dt

[
t−nβU(η)

]
= −nβt−nβ−1U(η) + t−nβ∇U(η) · (−βt−1η)

= t−nβ−1 [−nβU(η)− β∇U(η) · η] ,

(1812)

where η := xt−β. Next observe

∆(um) =
n∑
i=1

∂xixiu
m

=
n∑
i=1

m∂xi
[
um−1uxi

]
= mum−2

n∑
i=1

(m− 1)u2
xi + uuxixi

= mum−2
[
(m− 1)‖∇u‖2 + u∆u

]
.

(1813)

Since

∇u(x, t) = t−nβ∇U(xt−β) · t−β = t−(n+1)β∇U(η) (1814)

and

∆u(x, t) = t−nβ
n∑
i=1

∂xixiU(xt−β) = t−(n+2)β∆U(η), (1815)

it follows that

∆(um) = m
[
t−nβU(η)

]m−2 [
(m− 1)t−2(n+1)β‖∇U(η)‖2 + t−nβU(η) · t−(n+2)β∆U(η)

]
= t−β((m−2)n+2(n+1))mU(η)m−2

[
(m− 1)‖∇U(η)‖2 + U(η)∆U(η)

]
= t−β(mn+2)mU(η)m−2

[
(m− 1)‖∇U(η)‖2 + U(η)∆U(η)

]
.

(1816)

Equating (1812) and (1816) reveals, from the powers of t,

− nβ − 1 = −β(mn+ 2) =⇒ β =
1

(m− 1)n+ 2
=⇒ α =

n

(m− 1)n+ 2
, (1817)

where the final equality holds by (1811).

414 Last Modified: 4/26/2019



ADE Qual Notes Heaton

b) Equating (1812) and (1816) for our choices of α and β yields

− nβU(η)− β∇U(η) · η = mU(η)m−2
[
(m− 1)‖∇U(η)‖2 + U(η)∆U(η)

]
= ∆(Um(η)), (1818)

where the final equality holds in analogous fashion to (1813). This implies

αU(η) + β∇U(η) · η + ∆(Um(η)) = 0, (1819)

recalling α = nβ. Thus C1 = α and C2 = β.

c) Let r := ‖η‖ and assume f(r) is a solution to the PDE in (1819). Then the PDE transforms into the

ODE

0 = nβf + βf ′r +

(
(fm)′′ +

n− 1

r
(fm)′

)
, (1820)

which implies

0 = nβrn−1 + βf ′rn +
(
(fm)′′rn + (n− 1)(fm)′rn−1

)
= (βfrn)′ + (rn−1(fm)′)′. (1821)

Integrating with respect to r and assuming the integration constant is zero, we obtain

0 = βfrn + rn−1(fm)′ = βfrn +mrn−1fm−1f ′ =⇒ 0 = βr +mfm−2f ′. (1822)

Integrating once more yields

∫
mfm−2 df = −

∫
βr dr =⇒ mfm−1

m− 1
= C− βr

2

2
=⇒ f =

[
m− 1

m

(
C − βr2

2

)]1/(m−1)

, (1823)

for some scalar C ∈ R. Since we assume U(η) is nonnegative, we then write

U(η) = max

{[
m− 1

m

(
C − β‖η‖2

2

)]1/(m−1)

, 0

}
, (1824)

noting 0 is a solution to the PDE. Then u(x, t) = t−αU(η), using α, β, and U as derived above.
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d) Setting

R(t) :=

(
2Ct2β

β

)1/2

, (1825)

it follows (1824) that u(x, t) = 0 for all x /∈ B(0, R(t)). Consequently,

1 =

∫
Rn

u(x, t) dx =

∫
B(0,R(t))

u(x, t) dx =

∫ R(t)

r=0

∫
∂B(0,r)

t−αU(rt−β) dσdr, (1826)

where we abusively write U(x) = U(‖x‖) = U(r) since U is radially symmetric. Then

1 = n |B(0, 1)|
∫ R(t)

r=0

t−αU(rt−β) rn−1dr =⇒ tα

n|B(0, 1)|
=

∫ R(t)

r=0

[
m− 1

m

(
C − βr2

2t2β

)]1/(m−1)

rn−1dr.

(1827)

This implies

tα

n|B(0, 1)|

(
m

m− 1
· 2t2β

β

)1/(m−1)

=

∫ R(t)

r=0

(
R(t)2 − r2

)1/(m−1)
rn−1 dr. (1828)

Then using the trig substitution r = R sin θ the integral becomes

∫ π/2

0
(R2 −R2 sin2 θ)1/(m−1)(R sin θ)n−1 R cos θdθ = Rn+2/(m−1)

∫ π/2

0
cos(m+1)/(m−1) θ sinn−1 θ dθ.

(1829)

Thus

Rn+2/(m−1) =
tα

n|B(0, 1)|

(
m

m− 1
· 2t2β

β

)1/(m−1)
[∫ π/2

0
cos(m+1)/(m−1) θ sinn−1 θ dθ

]−1

. (1830)

With R as in (1830), we then deduce, by (1825),

C = R2 · β

2t2β
. (1831)

With this choice of C and U as in (1824), we see u(x, t) = t−αU(η) has unit mass, as desired.

�
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2006 Fall

F06.3 Consider the PDE 
ut −∆u = 0 in R× [0,∞)× (0,∞),

u = u0 on R× [0,∞)× {t = 0},
(1832)

with u0 ≥ 0. Compare the following two boundary conditions:

u = 0 on R× {y = 0} × (0,∞), (1833)

and

uy = 0 on R× {y = 0} × (0,∞). (1834)

Denote the solution of (1832) and (1833) by uD and the solution of (1832) and (1834) by uN . Show

uD ≤ uN in R× [0,∞)× (0,∞).

Solution:

We proceed as follows. First we define a function ũD : R2 × [0,∞) → R that extends uD to all of R2 by

means of a reflection. Then we express ũD in terms of a convolution. We then do similarly with a function

ũN . Then we obtain our result by directly comparing the integrands in each of the integral representations.

For each function f : R× [0,∞)→ R define f̃ : R2 → R via

f̃(x, y, t) :=


f(x, y, t) if y ≥ 0,

−f(x,−y, t) if y < 0.

(1835)

Then note f̃ = f in R× [0,∞) for each f and ũD(x, 0, t) = uD(x, 0, t) = 0. The extension ũD satisfies


ũDt −∆ũD = 0 in R2 × (0,∞),

ũD = ũ0 on R2 × {t = 0}.
(1836)

For notational convenience, let r = (x, y) ∈ R2. Since ũD solves the heat equation, its solution is given by
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the convolution

ũD(r, t) =
1

4πt

∫
R2

ũ0(ξ) exp

(
−|r − ξ|

2

4t

)
dξ. (1837)

We may expand this using the definition of ũ0 by writing

ũ(r, t) =
1

4πt

[∫ ∞
−∞

∫ ∞
0

u0(ξ1, ξ2) exp

(
−|r − ξ|

2

4t

)
dξ1dξ2 −

∫ ∞
−∞

∫ 0

−∞
u0(ξ1,−ξ2) exp

(
−|r − ξ|

2

4t

)
dξ1dξ2

]
=

1

4πt

∫ ∞
−∞

∫ ∞
0

u0(ξ1, ξ2)

[
exp

(
− (x− ξ1)2 + (y − ξ2)2

4t

)
− exp

(
− (x− ξ1)2 + (y + ξ2)2

4t

)]
dξ1dξ2

=
1

4πt

∫ ∞
−∞

∫ ∞
0

u0(ξ1, ξ2) exp

(
− (x− ξ1)2 + (y − ξ2)2

4t

)[
1− exp

(
−yξ2

t

)]
dξ1dξ2

(1838)

Now for each function f : R× [0,∞)→ R define f : R2 → R via

f(x, y, t) :=


f(x, y, t) if y ≥ 0,

f(x,−y, t) if y < 0.

(1839)

Then note f = f in R× [0,∞) for each f and uNy = 0 since

lim
y→0−

uNy (x, y, t) = lim
y→0−

∂

∂y

[
uNy (x,−y, t)

]
= lim
y→0−

−uNy (x,−y, t) = lim
y→0−

−uNy (x,−y, t) = lim
y→0+

−uNy (x, y, t), (1840)

which implies

uNy (x, 0, t) = −uNy (x, 0, t). (1841)

Thus 
uDt −∆uD = 0 in R2 × (0,∞),

uD = u0 on R2 × {t = 0}.
(1842)
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In similar fashion to above, we write

uN (r, t) =
1

4πt

∫
R2

u0(ξ) exp

(
−|r − ξ|

2

4t

)
dξ

=
1

4πt

[∫ ∞
−∞

∫ ∞
0

u0(ξ1, ξ2) exp

(
−|r − ξ|

2

4t

)
dξ1dξ2 +

∫ ∞
−∞

∫ 0

−∞
u0(ξ1,−ξ2) exp

(
−|r − ξ|

2

4t

)
dξ1dξ2

]
=

1

4πt

∫ ∞
−∞

∫ ∞
0

u0(ξ1, ξ2)

[
exp

(
− (x− ξ1)2 + (y − ξ2)2

4t

)
+ exp

(
− (x− ξ1)2 + (y + ξ2)2

4t

)]
dξ1dξ2

=
1

4πt

∫ ∞
−∞

∫ ∞
0

u0(ξ1, ξ2) exp

(
− (x− ξ1)2 + (y − ξ2)2

4t

)[
1 + exp

(
−yξ2

t

)]
dξ1dξ2.

(1843)

Since u0 ≥ 0 and exponentials are always positive, the integrands in (1838) and (1843) are nonnega-

tive. Consequently, for all t > 0 we see the integrand for uN is at least as large as that for ũD (by

comparing the final terms), which implies uN ≥ ũD in R2 × (0,∞). Furthermore, since ũD = uD and

uN = uN in R× [0,∞)× [0,∞), we conclude uN ≥ uD, as desired. �
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2006 Spring

S06.1. Solve the following initial value problem and verify your solution


ux + uy = u2 in R2,

u = h on R× {y = 0}.
(1844)

Solution:

We proceed by using the method of characteristics. Define F (p, q, z, x, y) = p + q − z2. Taking p = ux,

q = uy, and z = u yields F = 0 and gives rise to the ODE system


ẋ(s) = Fp = 1, x(0) = x0,

ẏ(s) = Fq = 1, y(0) = 0,

ż(s) = Fpp+ Fqq = p+ q = z2 z(0) = h(x0).

(1845)

This implies y = s and x = x0 + s = x0 + y. Using separation of variables, we see

∫ z

h(x0)

dζ

ζ2
=

∫ s

0
ds =⇒ 1

h(x0)
− 1

z
= s =⇒ z =

1
1

h(x0) − s
=

1
1

h(x−y) − y
. (1846)

Therefore,

u(x, y) =
1

1
h(x−y) − y

. (1847)

Indeed, u(x, 0) = 1/(1/h(x)) = h(x) and

ux + uy =

[
−u2 ·

(
− 1

h(x− y)2

)
· h′(x− y)

]
+

[
−u2 ·

(
− 1

h(x− y)2
· h′(x− y) · (−1)− 1

)]
= u2, (1848)

as desired. �
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S06.8. Let u(x, t) ∈ C2(Rn ×R) be a solution of the wave equation

utt −∆u = 0 in D, (1849)

where

D := {(x, t) : x′ = (x1, . . . , xn−1) ∈ Rn−1, |xn| ≤ t}. (1850)

Assume that u = 0 for |x′| ≥ R for some R > 1. Suppose also that u|Γ1
= 0 and u|Γ2

= 0, where

Γ1 := {(x, t) : x′ ∈ Rn−1, t− xn = 0, t > 0} and Γ2 := {(x, t) : x′ ∈ Rn−1, t+ xn = 0, t > 0}. (1851)

Prove that u ≡ 0.

Solution:

Let T ∈ (0,∞), and set Ω := D ∩ {t ≤ T}. Then note

Ω =
⋃

t∈[0,T ]

S(t)× {t}, (1852)

where S(t) := {x : |xn| ≤ t}. Thus, multiplying our PDE by ut and integrating reveals

0 =

∫
Ω
ut(utt −∆u) dxdt

=

∫ T

0

∫
S(t)

ut(utt −∆u) dxdt

=

∫ T

0

[∫
S(t)

ututt +∇u · ∇ut dx−
∫
∂S(t)

ut
∂u

∂n
dσ

]

=

∫ T

0

[∫
S(t)

∂t

[
1

2

(
u2
t + |∇u|2

)]
dx−

∫
∂S(t)

ut
∂u

∂n
dσ

]

=

∫ T

0

(
∂t

[
1

2

∫
S(t)

u2
t + |∇u|2 dx

]
−
∫
∂S(t)

dσ

)
dt

=

∫ T

0
Ė(t) dt−

∫ T

0

∫
∂S(t)

?? dσdt

= E(T )− E(0)−??????

≥ E(T )

≥ 0.

(1853)
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Therefore, E(T ) = 0. Since T was arbitrarily chosen, we deduce E(T ) = 0 for all T ∈ (0,∞). The-

refore, ut = 0 and ∇u = 0 in D, and so u is constant. Since u = 0 at a point in D, it follows that u ≡ 0,

and we are done. �
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2005 Winter

W05.6. Find the Fourier transform of the integrable function x 7→ sin2(x)/x2.

Solution:

Let f(x) := sin(x)/x. Then note

F(sin(x)) =
1√
2π

∫
R

sin(x) exp (−2πixξ) dx

=
1√
2π

∫
R

1

2i

(
eix − e−ix

)
exp (−2πixξ) dx

=
1

2i
√

2π

∫
R

exp

(
−2πix(ξ − 1

2π
)

)
− exp

(
−2πix

(
ξ +

1

2π

))
dx

=
1

2i
√

2π

[
δ

(
ξ − 1

2π

)
− δ

(
ξ +

1

2π

)]
.

(1854)

�
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2005 Fall

F05.4. Consider the heat equation ut = uyy on the real line with initial data u0 = 1 if y < 0 and u0 = 0

if y > 0.

a) Show the solution u(y, t) satisfies limt→∞ u(y, t) = 1/2.

b) Is the limit uniform in y? Prove your answer.

Solution:

a) Let u be a solution to the given PDE. Then


ut −∆u = 0 in R× (0,∞),

u = u0 on R× {t = 0},
(1855)

where

u0(y) :=


1 if y < 0,

0 if y > 0.

(1856)

Then since this is the heat equation we know the solution is given by

u(y, t) = (Φ ∗ u)(y, t) =

∫
R

Φ(y − ξ, t)u0(ξ) dξ =
1√
4πt

∫
R

exp

(
−|y − ξ|

2

4t

)
u0(ξ) dξ, (1857)

where Φ is the fundamental solution of the heat equation given by

Φ(y, t) :=


1√
4πt

exp

(
−y

2

4t

)
in R× (0,∞),

0 if R× (−∞, 0).

(1858)

We may then use the definition of u0 and the change of variables z = (ξ − y)/
√

4t to write

u(y, t) =
1√
4πt

∫ 0

−∞
exp

(
−|y − ξ|

2

4t

)
u0(ξ) dξ =

1√
π

∫ −y/√4t

−∞
exp

(
−z2

)
dz. (1859)

For any fixed y ∈ R, we deduce

lim
t→∞

u(y, t) = lim
t→∞

1√
π

∫ −y/√4t

−∞
exp

(
−z2

)
dz =

1√
π

∫ 0

−∞
exp

(
−z2

)
dz =

1√
π
·
√
π

2
=

1

2
. (1860)
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b) We claim the limit is not uniform in y. By way of contradiction, suppose the limit is uniform in y.

Let ε ∈ (0, 1/2). Then, by our assumption, there is T > 0 such that t > T implies

∥∥∥∥u(·, t)− 1

2

∥∥∥∥
L∞(R)

< ε. (1861)

However, for each t ∈ (0,∞)

lim
y→−∞

u(y, t) = lim
y→−∞

∫ −y/√4t

−∞
exp

(
−z2

)
dz =

∫ −∞
−∞

exp
(
−z2

)
dz = 0. (1862)

Now note u is positive in R × (0,∞), which is apparent by (1859) since the integrand on the right

hand side is always positive. Let t∗ > T . Then the positivity of u together with (1862) implies there

exists y∗ ∈ R such that u(y∗, t∗) ∈ (0, 1
2 − ε), and so

1

2
− u(y∗, t∗) > ε, (1863)

which contradicts (1861). Whence the limit is not uniform in y.

�
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F05.7. Find the (entropy) solution for all time t > 0 of the inviscid Burgers equation ut+
1
2(u2)x = 0 with

the initial condition

u(x, 0) =



0 if x < −1,

x+ 1 if −1 < x < 0,

1− 1
2x if 0 < x < 2,

0 if x > 2.

(1864)

Solution:

We proceed by using the method of characteristics. Let F (p, q, z, x, t) := q + zp. Then taking q = ut,

p = ux, and z = u yields F = 0 and gives rise to the ODE system
ẋ(s) = Fp = z(s), x(0) = x0,

ṫ(s) = Fq = 1, t(0) = 0,

ż(s) = Fpp+ Fqq = zp+ q = 0, z(0) = g(x0),

(1865)

where g(α) := u(α, 0). This implies t = s and z is constant along characteristics. Thus, integrating

reveals

x = x0 +

∫ t

0
ẋ(τ) dτ = x0 +

∫ t

0
z(τ) dτ = x0 + tg(x0) =



x0 if x0 < −1,

(1 + t)x0 + t if −1 < x0 < 0,

(1− t
2)x0 + t if 0 < x0 < 2,

x0 if x0 > 2.

(1866)

Notice the characteristics are linear, and, in particular, are vertical for x0 < −1 and x0 > 2. And, for

x0 ∈ (0, 2) we see

lim
t→2−

x = lim
t→2−

(
1− t

2

)
x0 + t = 2, (1867)

i.e., the characteristics crash at time t = 2. Note they do not crash before this time. As mentioned, they

are vertical in two regions. And, if two characteristics originating at distinct points α1, α2 ∈ (−1, 0) cross
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at a time t? ∈ (0, 2), then we we see

(1 + t?)α1 + t? = (1 + t?)α2 + t? =⇒ α1 = α2, (1868)

a contradiction. In similar fashion, we see characteristics both originating in (0, 2) don’t crash before time

t = 2. And, the slope of characteristics originating in (−1, 0) exceeds that of those originating in (0, 2),

and so these characteristics cannot cross either. Thus, we see t = 2 is, in fact, the first time at which the

characteristics crash.

Solving for x0 in terms of x and t in our above expression reveals that, for all x ∈ R× (0, 2),

u(x, t) = g(x0) =


0 if x < −1 or x > 2,

1 + x0 if −1 < x−t
1+t < 0,

1− 1
2x0 if 0 < x−t

1− t
2

< 2,

=



0 if x < −1 or x > 2,

1 + x

1 + t
if −(1 + t) < (x− t) < 0,

2− x
2− t

if 0 < (x− t) < (2− t).

(1869)

Let f(u) := u2

2 . Then, by the Rankine-Hugenoit condition, the shock curve parameterized52 by (s(t), t)

satisfies (s(2), 2) = (2, 2) and

ṡ(t) =
f(u`)− f(ur)

u` − ur
=

1
2u

2
` −

1
2u

2
r

u` − ur
=

1

2
u` =

1 + s

2(1 + t)
, (1870)

where u` and ur denote the limiting function values approaching the curve from the left and right, respecti-

vely, and we note ur = 0. Using separation of variables, we see

∫
ds

1 + s
=

∫
dt

2(1 + t)
=⇒ ln(1 + s) = ln((1 + t)1/2) + ln(C) =⇒ s = C(1 + t)1/2 − 1, (1871)

for some scalar C ∈ R. The initial condition implies C =
√

3. Therefore, for all (x, t) ∈ R× (0,∞),

u(x, t) =


1 + x

1 + t
if −1 < x−t

1+t < s(t) =
√

3(1 + t)− 1,

0 if x < −1 or x > s(t) =
√

3(1 + t)− 1.

(1872)

�

52This s is distinct from that used in the method of characteristics earlier.
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2004 Fall

F04.2. Let u(x, t) be a bounded solution to the Cauchy problem for the heat equation


∂tu = a2∂2

xu, t > 0, x ∈ R, a > 0,

u(x, 0) = φ(x).

(1873)

Here φ ∈ C(R) satisfies

lim
x→+∞

φ(x) = b and lim
x→−∞

φ(x) = c. (1874)

Compute the limit of u(x, t) as t −→ +∞, x ∈ R. Justify your answer carefully.

Solution:

Define the function v(x, t) := u(ax, t) for each (x, t) ∈ R× [0,∞). Then v satisfies


vt − vxx = 0 in R× (0,∞),

v = g on R× {t = 0},
(1875)

where g(x) := φ(ax). Since v solves the heat equation, it is given by the convolution

v(x, t) =
1√
4πt

∫
R

g(ξ) exp

(
−|x− ξ|

2

4t

)
dξ. (1876)

Letting z = (ξ − x)/
√

4t, we may write

v(x, t) =
1√
π

∫
R

g
(
z
√

4t+ x
)

exp
(
−z2

)
dz. (1877)

We claim φ is bounded and, thus, so also is g. This implies the integrand is dominated by some constant

multiplied by exp(−z2), which is integrable. Whence we may use the dominated convergence theorem to
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deduce for x ∈ R

lim
t→∞

v(x, t) = lim
t→∞

1√
π

[∫ +∞

0
g
(
z
√

4t+ x
)

exp
(
−z2

)
dz +

∫ 0

−∞
g
(
z
√

4t+ x
)

exp
(
−z2

)
dz

]
=

1√
π

[∫ +∞

0
lim
t→∞

g
(
z
√

4t+ x
)

exp
(
−z2

)
dz +

∫ 0

−∞
lim
t→∞

g
(
z
√

4t+ x
)

exp
(
−z2

)
dz

]
=

1√
π

[
b

∫ +∞

0
exp

(
−z2

)
dz + c

∫ 0

−∞
exp

(
−z2

)
dz

]
=

1√
π

[
b
√
π

2
+
c
√
π

2

]
=
b+ c

2
,

(1878)

where we use the dominated convergence theorem to obtain the second equality. The first part of the

third line holds by using the fact z > 0 in the first integrand and g −→ b as x −→ ∞, by hypothesis. The

second part of the third line follows similarly. Therefore for each x ∈ R we conclude

lim
t→∞

u(x, t) = lim
t→∞

v(x/a, t) =
b+ c

2
, (1879)

as desired. Note the division by a is well-defined since a > 0.

All that remains is to verify φ is bounded. Since φ −→ b as x −→ +∞, there is y > 0 such that x > y implies

|φ(x)− b| < 1 =⇒ |φ(x)| < |b|+ 1. (1880)

Consequently, φ is bounded on (y1,∞). And, since [0, y1] is closed and bounded, it is compact and therefore

φ([0, y1]) is compact as φ is continuous, which implies φ is bounded on [0, y1]. This shows φ is bounded on

[0,∞). Similar argument allows us to deduce φ is bounded on (−∞, 0] and, thus, φ is bounded on R. �
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F04.3. Consider the damped wave equation
(∂tt −∆ + a∂t)u = 0 in R3 ×R,

u = φ on R3 × {t = 0},

u = ψ on R3 × {t = 0},

(1881)

where a ∈ C∞0 (R3) is a nonnegative function and φ, ψ ∈ C∞0 (R3). Show the energy E(t) is decreasing in

time, where

E(t) :=
1

2

∫
R3

|Du|2 + u2
t dx. (1882)

Solution:

To proceed, we differentiate E in time to find

Ė(t) =

∫
R3

Du ·Dut + ututt dx =

∫
R3

ut (−∆u+ utt) dx =

∫
R3

ut [−aut] dx = −
∫
R3

au2
t dx ≤ 0. (1883)

The equality holds via integration by parts, where the boundary terms vanish since we claim u is com-

pactly supported for all time. The following equality holds by the PDE u satisfies, and the final inequality

holds since the integral is nonnegative. Therefore Ė(t) ≤ 0 for all times t ∈ [0,∞), which implies E(t) is

nonincreasing in time.

All that remains is to verify our claim that u is compactly supported for all times. To do this, we first

show that if there exists a ball B(z, r) ⊂ R3 such that u = ut = 0 on B(z, r)× {t = 0}, then u = 0 in the

cone K(z, r) defined by

K(z, r) := {(x, t) ∈ R3 × [0, r) : x ∈ B(z, r − t)}. (1884)

For notational convenience, set S(t) := B(z, r − t). Then define the energy e(t) via

e(t) :=
1

2

∫
S(t)
|Du|2 + u2

t dx. (1885)
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We assume φ = ψ = 0 in S(0), from which it follows that e(0) = 0. Then differentiating in time reveals

ė(t) =

∫
S(t)

Du ·Dut + ututt dx+

∫
∂S(t)

1

2
(|Du|2 + u2

t )v · n dσ

=

∫
S(t)

ut (utt −∆u) dx+

∫
∂S(t)

ut
∂u

∂n
+

1

2
(|Du|2 + u2

t )v · n dσ

=

∫
S(t)
−au2

t dx+

∫
∂S(t)

ut
∂u

∂n
− 1

2

(
|Du|2 + u2

t

)
dσ,

(1886)

where v is the Eulerian velocity of the boundary ∂S(t) and n is the outward normal along ∂S(t). To-

gether the Cauchy-Schwarz inequality and the fact that

0 ≤ (α− β)2 = α2 + β2 − 2αβ =⇒ αβ ≤ 1

2
(α2 + β2), for all α, β ∈ R, (1887)

imply ∣∣∣∣ut ∂u∂n
∣∣∣∣ = |ut| |Du · n| ≤ |ut||Du| ≤

1

2
(u2
t + |Du|2). (1888)

Thus, our boundary integral is nonnegative, i.e.,

ė(t) ≤
∫
S(t)
−au2

t dx+

∫
∂S(t)

1

2

(
|Du|2 + u2

t

)
− 1

2

(
|Du|2 + u2

t

)
dσ = −

∫
S(t)

au2
t dx ≤ 0, (1889)

where the final inequality holds since a is nonnegative. This shows ė(t) ≤ 0 for all t ∈ [0, r), and so e(t)

is nonincreasing. Since the integrand in the definition of e(t) is nonnegative, it follows that 0 ≤ e(t) ≤

e(0) = 0, whereby we see e(t) = 0. Whence ut = 0 and Du = 0 in S(t) for each t ∈ [0, r), i.e., in K(z, r).

Consequently, u is constant in K(z, r). Since u = 0 in S(0) ⊆ K(z, r), it follows that u = 0 everywhere in

K(z, r), as desired. In particular, this implies, by the continuity of u,

u(z, r) = lim
t→r−

u(z, t) = lim
t→r−

0 = 0. (1890)

We now apply our result to show u is compactly supported. Let T ∈ (0,∞). Since φ and ψ are compactly

supported, there exists R > 0 such that spt(u(·, 0)) ⊆ B(0, R). Now choose z ∈ R3−B(0, R+T + 1). This

implies u = 0 on B(z, T )× {t = 0}, from which our result above with (1890) implies u(z, T ) = 0. Since z

was arbitrarily chosen in R3 −B(0, R+ T + 1), it follows that spt(u(·, T )) ⊆ B(0, R+ T + 1), i.e., u(·, T )

is compactly supported. Since T was chosen arbitrarily, this holds for all times, and the result follows. �
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F04.7. Consider the PDE

uux + ut + u = 0 in R×R. (1891)

a) Find the particular solution that satisfies the condition u(0, t) = e−2t.

b) Show that at the point (z, t) = (1/9, ln(2)), u = 1/3.

Solution:

a) We proceed by using the method of characteristics. Define F (p, q, ξ, z, t) = ξp+ q+ ξ. Taking p = uz,

q = ut, and ξ = u yields F = 0 and gives rise, via the method of characteristics, to the ODE system
ż(s) = Fp = ξ(s), z(0) = 0,

ṫ(s) = Fq = 1, t(0) = t0,

ξ̇(s) = Fpp+ Fqq = ξp+ q = −ξ(s), ξ(0) = e−2t0 .

(1892)

This implies t = t0 + s and

ξ(s) = ξ(0)e−s = e−2t0−s. (1893)

Thus,

z(s) = z(0) +

∫ s

0
ż(τ) dτ = 0 +

∫ s

0
e−2t0−τ dτ = e−2t0

[
1− e−s

]
= ξ(s) [es − 1] , (1894)

and so

es =
z

ξ
+ 1 =

z + ξ

ξ
, (1895)

where the division is well-defined since ξ(s) 6= 0 for all s. Whence we obtain the quadratic equation

ξ = e−2(t0+s)+s = e−2tes = e−2t · z + ξ

ξ
=⇒ ξ2 − e−2tξ − e−2tz = 0. (1896)

Using the quadratic formula, noting ξ > 0, we deduce

ξ =
e−2t +

√
e−4t + 4ze−2t

2
=
e−2t

2

[
1 +

√
1 + 4ze2t

]
. (1897)

Therefore, we conclude

u(x, t) =
e−2t

2

[
1 +

√
1 + 4ze2t

]
. (1898)
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b) Directly plugging (1/9, ln(2)) into our expression for u reveals

u(1/9, ln(2)) =
e−2 ln(2)

2

[
1 +

√
1 + 4

(
1

9

)
e2 ln(2)

]
=

1

8

[
1 +

√
1 +

16

9

]
=

1

8

[
1 +

5

3

]
=

1

3
, (1899)

as desired.

�
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2003 Fall

F03.1. Consider the ODE

u̇ = v − u3, v̇ = u− v. (1900)

a) Find all the stationary points and their type.

b) Draw the phase plane and find all connections between the stationary points.

Solution:

a) The three fixed points of this system are given by (u, v) = (0, 0) and (u, v) = (1, 1) and (u, v) =

(−1,−1). The Jacobian matrix for this system is given by

J(u, v) =

 ∂u̇/∂u ∂u̇/∂v

∂v̇/∂u ∂v̇/∂v

 =

 −3u2 1

1 −1

 , (1901)

which has eigenvalues λ that satisfy

0 = (λ+3u2)(λ+1)−1 = λ2+(3u2+1)+(3u2−1) =⇒ λ =
−(3u2 + 1)±

√
(3u2 + 1)2 − 4(3u2 − 1)

2
. (1902)

At the origin, we obtain eigenvalues λ = (−1 ±
√

5)/2, and so the origin obtain forms a saddle. At

(±1,±1) we see

λ =
−4±

√
42 − 4(3− 1)

2
=
−4±

√
8

2
= −2±

√
2, (1903)

and so (±1,±1) form stable nodes.

b) The null-cline for u̇ = 0 is v = u3 and for v̇ = 0 it is u = v. A phase plane is given below.
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Figure 30: Phase plane for F03.1.
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F03.3 The function h(x, t) defined by

h(x, t) :=
1√
4πt

exp

(
−x

2

4t

)
(1904)

satisfies the heat equation ht + hxx = 0. Using this result, verify for any smooth function φ

u(x, t) = exp

(
t3

3
− xt

)∫ ∞
−∞

φ(ξ)h(x− t2 − ξ, t) dξ (1905)

satisfies ut + xu− uxx = 0. Given that f is bounded and continuous everywhere in R, establish that

lim
t→0

∫ ∞
−∞

f(ξ)h(x− ξ, t) dξ = f(x), (1906)

and then show that u(x, t) −→ φ(x) as t −→ 0.

Solution:

The first part with the derivatives is long and tedious, and so we omit the details here. Let ε > 0 be given

and fix x ∈ R. We must show there is T > 0 such that t ∈ (0, T ) implies

∣∣∣∣f(x)−
∫ ∞
−∞

f(ξ)h(x− ξ, t) dξ

∣∣∣∣ < ε. (1907)

�
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2002 Winter

W02.5. Consider the boundary value problem


∆u+

∑n
k=1 αkuxk − u3 = 0 in Ω,

u = 0 on ∂Ω,

(1908)

where Ω is a bounded domain in Rn with smooth boundary. If the αk’s are constants, and u(x) has

continuous derivatives up to second order, prove that u must vanish identically.

Solution:

Set v := (α1, . . . , αn) so that

∆u+ v ·Du− u3 = 0 in Ω. (1909)

Then

0 =

∫
Ω
u
(
∆u+ v ·Du− u3

)
dx

=

∫
Ω
−|Du|2 − 0− u4 dx+

∫
∂Ω
u
∂u

∂n
+ u2v · n dσ

=

∫
Ω
−|Du|2 − u4 dx,

(1910)

where n is the outward normal along ∂Ω and we note Dv = 0. This implies

0 ≤
∫

Ω
|Du|2 dx = −

∫
Ω
u4 dx ≤ 0 =⇒ Du = 0 in Ω, (1911)

and so u is constant in Ω. Combined with the fact u = 0 on ∂Ω, it follows that u is identically zero.

�
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W02.6. Solve the Cauchy problem


ut + u2ux = 0 in R× (0,∞),

u = 2 + x on R× {t = 0}.
(1912)

Solution:

We proceed by using the method of characteristics. Set F (p, q, z, x, t) = q + z2p. Then taking p = ux,

q = ut, and z = u yields F = 0 and gives rise to the ODE system
ẋ(s) = Fp = z2, x(0) = x0,

ṫ(s) = Fq = 1, t(0) = 0,

ż(s) = Fpp+ Fqq = z2p+ q = 0, z(0) = 2 + x0.

(1913)

This implies t = s and z is constant along characteristics. Thus,

x(s) = x0 +

∫ s

0
ẋ(τ) dτ = x0 +

∫ s

0
z2(τ) dτ = x0 + sz2(0) = x0 + s(2 + x0)2. (1914)

Expanding this quadratic expression reveals

x = s(4 + 4x0 + x2
0) + x0 =⇒ sx2

0 + (4s+ 1)x0 + (4s− x) = 0. (1915)

Using the quadratic equation, we then obtain

x0 =
−(4s+ 1) +

√
(4s+ 1)2 − 4s(4s− x)

2s
= −2 +

−1 +
√

8s+ 1 + 4sx

2s
. (1916)

Therefore,

u(x, t) = z(t) = 2 + x0 =
−1 +

√
8t+ 1 + 4tx

2t
, for all (x, t) ∈ R× (0,∞) s.t. 2 + 1/4t+ x ≥ 0. (1917)

�
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2001 Fall

F01.2. Consider the differential operator

Lu :=
d2u

dx2
+ 2

du

dx
+ α(x)u, (1918)

where α is a real-valued function. The domain is x ∈ [0, 1], with Neumann boundary conditions u′(0) =

u′(1) = 0.

a) Find a function φ for which L is self-adjoint in the norm

‖u‖2 =

∫ 1

0
u2φ dx. (1919)

b) Show L must have a positive eigenvalue if α is not identically zero and

∫ 1

0
α(x) dx ≥ 0. (1920)

Solution:

a) In order for L to be self-adjoint in the given norm we need

〈u, Lv〉 = 〈Lu, v〉 (1921)

to hold for all appropriate functions u and v, where the scalar product is defined by

〈u, v〉 :=

∫ 1

0
uvφ dx. (1922)
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Observe

〈u, Lv〉 =

∫ 1

0
u(v′′ + 2v′ + αv)φ dx

=

∫ 1

0
−(uφ)′v′ + 2uv′φ+ αuvφ dx+

[
uv′φ

]1
0︸ ︷︷ ︸

=0

=

∫ 1

0
−u′φv′ + uv′[2φ− φ′] + αuvφ dx

=

∫ 1

0
(u′φ)′v + uv′[2φ− φ′] + αuvφ dx

=

∫ 1

0
[u′′ + 2u′ + αu]vφdx+

∫ 1

0
[uv′ − u′v][2φ− φ′] dx

= 〈Lu, v〉+

∫ 1

0
[uv′ − u′v][2φ− φ′] dx.

(1923)

Taking φ := exp(2x) yields φ′ = 2φ so that the second term on the right hand side above vanis-

hes and we obtain (1922), as desired.

b) The integral inequality (1920) suggests we divide by u, which we presume is well-defined. For a

nonzero eigenfunction u with eigenvalue λ we have

u′′ + 2u′ + αu = Lu = λu, (1924)

and so

λ =

∫ 1

0
λ dx =

∫ 1

0

u′′

u
+ 2

u′

u
+ α dx

=

∫ 1

0
−
(
u′

u

)2

+ 2
u′

u
+ α dx+

[
u′

u

]1

0︸ ︷︷ ︸
=0

≥
∫ 1

0
2
u′

u
−
(
u′

u

)2

dx.

(1925)

(Return and complete.)
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2001 Spring

S01.3. Solve the initial value problem


ut −

1

2

(
u2
x + x2

)
= 0 in R× (0,∞),

u = x on R× {t = 0}.
(1926)

You will find that the solution blows up in finite time. Explain this in terms of the characteristics for

this equation.

Solution:

We proceed by using the method of characteristics. Define F (p, q, z, x, t) = q− p2

2 −
x2

2 . Then taking p = ux,

q = ut, and z = u yields F = 0 and gives rise to the ODE system



ṗ(s) = −Fx − Fzp = x(s), p(0) = 1,

q̇(s) = −Ft − Fzq = 0, q(0) = 1
2(1 + x2

0),

ẋ(s) = Fp = −p(s), x(0) = x0,

ṫ(s) = Fq = 1, t(0) = 0,

ż(s) = Fpp+ Fqq = −p2(s) + q(s), z(0) = x0.

(1927)

This implies t = s and

ẍ = −ṗ = −x =⇒ ẍ+ x = 0 =⇒ x = c1 cos(t) + c2 sin(t). (1928)

The initial condition x(0) = x0 implies c1 = x0. The condition p(0) = 1 reveals

− 1 = −p(0) = ẋ(0) = −x0 sin(0) + c2 cos(0) = c2 =⇒ c2 = −1. (1929)

Thus,

x = x0 cos(t)− sin(t) and p = −ẋ = x0 sin(t) + cos(t), (1930)

which implies

p = cos(t) +

(
x+ sin(t)

cos(t)

)
sin(t) = cos(t) + sin2(t) + x tan(t). (1931)
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Thus, for x 6= 0,

lim
t→(π/2)−

|ux(x, t)| = lim
t→(π/2)−

∣∣∣ cos(t)︸ ︷︷ ︸
→0

+ sin2(t)︸ ︷︷ ︸
→1

+x tan(t)︸ ︷︷ ︸
→±∞

∣∣∣ = +∞. (1932)

This reveals |ux| −→ +∞ and, thus, |u| −→ +∞ by the time t = π/2.

�
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2000 Fall

F00.1. Consider the Dirichlet problem in a bounded domain Ω ⊂ Rn with smooth boundary ∂Ω:


∆u+ a(x)u = f(x) in Ω,

u = 0 on ∂Ω.

(1933)

a) Assuming |a(x)| is small enough, prove the uniqueness of the classical solution.

b) Prove the existence of the solution in the Sobolev space H1(Ω), assuming f ∈ L2(Ω).

Solution:

a) Let u and v be two classical solutions to the PDE. Setting w := u−v, it suffices to show w is identically

zero. Note 
∆w + aw = 0 in Ω,

w = 0 on ∂Ω.

(1934)

Since w = 0 on ∂Ω, Poincaré’s inequality asserts there exists C > 0, dependent only on D, such

that ∫
Ω
w2 dx ≤ C

∫
Ω
|Dw|2 dx. (1935)

However,

∫
Ω
aw2 dx =

∫
Ω
−w∆w dx =

∫
Ω
|Dw|2 dx−

∫
∂Ω
w
∂w

∂n
dσ︸ ︷︷ ︸

=0

=

∫
Ω
|Dw|2 dx, (1936)

and so

‖a‖∞
∫

Ω
w2 dx ≥

∫
Ω
aw2 dx ≥ 1

C

∫
Ω
w2 dx =⇒

(
‖a‖∞ −

1

C

)∫
Ω
w2 dx ≥ 0. (1937)

If ‖a‖∞ < 1/C, then it necessarily follows that

∫
Ω
w2 dx = 0, (1938)

which implies w = 0 in Ω, as desired.
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b) We proceed by application of the Lax-Milgram theorem and assume ‖a‖∞ < 1/C. Define H := H1
0 (Ω)

and the bilinear form B : H ×H → R and the linear form ` : H → R via

B[u, v] :=

∫
Ω
Du ·Dv − auv dx and `(v) :=

∫
Ω
−fv dx. (1939)

We claim B is bounded and coercive and ` is bounded, from which the Lax-Milgram theorem asserts

there exists a unique ũ ∈ H such that

B[ũ, v] = `(v), for all v ∈ H, (1940)

i.e., ũ is the unique weak solution of the PDE.

All that remains is to verify the assumptions of the Lax-Milgram theorem hold. Observe

|`(v)| ≤ ‖fv‖L1(Ω) ≤ ‖f‖L2(Ω)‖v‖L2(Ω) ≤ ‖f‖L2(Ω)‖v‖H (1941)

and

|B[u, v]| ≤ ‖Du ·Dv‖L1(Ω) + ‖a‖L∞(Ω)‖uv‖L1(Ω)

≤ ‖Du‖L2(Ω)‖Dv‖L2(Ω) + ‖a‖L∞(Ω)‖u‖L2(Ω)‖v‖L2(Ω)

≤
(
1 + ‖a‖L∞(Ω)

)
‖u‖H‖v‖H ,

(1942)

which shows ` and B are bounded. By our hypothesis, there exists β ∈ (0, 1) such that ‖a‖∞ < β/C.

This implies B is coercive since

B[u, u] =

∫
Ω
|Du|2 + au2 dx

≥ ‖Du‖2L2(Ω) − ‖a‖L∞(Ω)‖u‖2L2(Ω)

≥ (1− β)‖Du‖2L2(Ω) +

(
β

C
− ‖a‖L∞(Ω)

)
‖u‖2L2(Ω)

≥ min

{
1− β, β

C
− ‖a‖L∞(Ω)

}(
‖Du‖2L2(Ω) + ‖u‖2L2(Ω)

)
= min

{
1− β, β

C
− ‖a‖L∞(Ω)

}
‖u‖2H ,

(1943)

and the proof is complete. �
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F00.2. Consider the Cauchy problem


ut −∆u+ u2 = f in Rn × (0, T ),

u = 0 on Rn × {t = 0}.
(1944)

Prove the uniqueness of the classical bounded solution, assuming T is small enough.

Solution:

We proceed by applying Banach’s fixed point theorem. Fix M > 0 and set

V :=
{
v ∈ C2,1(Rn × [0, T )) : ‖v‖ ≤M

}
, (1945)

where ‖ · ‖ denotes the sup norm. Since V is a closed subset of a complete space, V forms a Banach space.

Define

φ(v) :=

∫ t

0

∫
Rn

Φ(x− y, t− s)
(
f(y, s)− v(y, s)2

)
dyds, (1946)

where Φ is the fundamental solution of the heat equation, i.e.,

Φ(x, t) := (4πt)−n/2 exp

(
−|x|

2

4t

)
, in Rn × (0,∞). (1947)

We claim φ forms a contraction for T sufficiently small. Because V is complete and φ is a contraction for

T sufficiently small, the Banach fixed point theorem asserts, for T sufficiently small, there exists a unique

fixed point u of φ. However, this fixed point u satisfies the implicit equation

u(x, t) = (φ ◦ u)(x, t)) =

∫ t

0

∫
Rn

Φ(x− y, t− s)
[
f(y, s)− u2(y, s)

]
dyds, (1948)

from which Duhamel’s Principle asserts u forms a solution to the inhomogeneous PDE (1944). The uni-

queness and existence of the fixed point u of φ (for T sufficiently small) establishes the result.
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All that remains is to verify φ is a contraction. Observe, for all v1, v2 ∈ V ,

‖φ(v1)− φ(v2)‖ = sup
(x,t)

∣∣∣∣∫ t

0

∫
Rn

Φ(x− y, t− s)
[
v2(y, s)2 − v2

1(y, s)
]

dyds

∣∣∣∣
≤ ‖v2

2 − v2
1‖ · sup

(x,t)

∫ t

0

∫
Rn

Φ(x− y, t− s) dy︸ ︷︷ ︸
=1

ds

= ‖v2
2 − v2

1‖ · sup
(x,t)

∫ t

0
ds

= T‖v2
2 − v2

1‖

≤ 2MT‖v2 − v1‖.

(1949)

Fixing T < 1/2M , we see φ forms a contraction on V , and the proof is complete. �
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F00.5. Consider the eigenvalue problem in the interval [0, 1],

− y′′(t) + p(t)y(t) = λy(t), y(0) = y(1) = 0. (1950)

a) Prove all eigenvalues λ are simple.

b) Prove there is at most a finite number of negative eigenvalues.

Solution:

a) First observe this problem may be rewritten in regular Sturm-Liouville form


[−1y′]′ + py = λy

1y(0) + 0y′(0) = 0

1y(1) + 0y′(1) = 0.

(1951)

Define the differential operator L by Ly := −y′′ + py. Suppose y1 and y2 are eigenfunctions with

a common eigenvalue λ. Then

0 = λ(y1y2 − y1y2)

= (Ly1)y2 − y1(Ly2)

= [−y′′1 + py1]y2 − y1[−y′′2 + py2]

= y1y
′′
2 − y′′1y2

= (y1y
′
2)′ − (y′1y2)′

=
(
y1y
′
2 − y′1y2

)′
.

(1952)

This shows y1y
′
2 − y′1y2 is constant. But, from our boundary conditions, we see

y1(0)y′2(0)− y′1(0)y2(0) = 0y′2(0)− y′1(0)0 = 0, (1953)

which implies the Wronskian satisfies

W (y1, y2)(x) =

∣∣∣∣∣∣ y1(x) y2(x)

y′1(x) y′2(x)

∣∣∣∣∣∣ = y1(x)y′2(x)− y′1(x)y2(x) = 0. (1954)
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This shows y1 and y2 are linearly dependent, from which it follows that each eigenvalue λ corresponds

to a single linearly independent solution of the ODE, as desired.

b) See S09.2b.

�
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F00.6. Consider the initial boundary value problem
ut − uxx + au = 0 in {t > 0} × {x > 0},

u = 0 on {x > 0} × {t = 0},

u = g on {x = 0} × {t > 0},

(1955)

where g(t) is a continuous function with compact support and a is a constant. Find the explicit solu-

tion of this problem.

Solution:

See F18.05. �
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1999 Fall

F99.1. Suppose ∆u = 0 in the weak sense in Rn and there is a constant C such that

∫
{|x−y|<1}

|u(y)| dy < C, for all x ∈ Rn. (1956)

Show u is constant.

Solution:

Let Ω be a compact subset of Rn. Then the collection {B(x, 1)}x∈Rn forms an open cover of Ω. By

compactness, there exists a finite subcover, i.e., there are {xi}mi=1 such that

Ω ⊆
m⋃
i=1

B(xi, 1). (1957)

By our hypothesis, it follows that

∫
Ω
|u(y)| dy ≤

m∑
i=1

∫
B(xi,1)

|u(y)| dy ≤
m∑
i=1

C = Cm <∞. (1958)

Because Ω is an arbitrary compact subset of Rn, it follows that u ∈ L1
loc(R

n). Together with the fact u

is a weak solution of Laplace’s equation, the assumptions of Weyl’s lemma are satisfied. Whence, up to

redefinition on a set of measure zero, u ∈ C∞(Ω) is smooth and satisfies ∆u = 0 pointwise in Ω.

Fix x ∈ Rn and set53

φ(r) := −
∫
∂B(x,r)

u(y) dσ(y) = −
∫
∂B(0,1)

u(x+ rz) dσ(z). (1959)

Then

φ′(r) = −
∫
∂B(0,1)

Du(x+ rz) · z dσ(z) = −
∫
∂B(x,r)

Du(y) · y − x
r

dσ(y) = −
∫
∂B(x,r)

∂u

∂n
dσ(y). (1960)

Upon integrating by parts, we then see

φ′(r) =
r

n
−
∫
B(x,r)

∆u(y) dy = 0. (1961)

53This follows the approach in the proof of Theorem 2 on page 25 of Evans’ PDE text.
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This implies φ is constant, and so

φ(r) = lim
t→0+

φ(t) = lim
t→0+

−
∫
∂B(x,t)

u(y) dσ(y) = u(x). (1962)

In particular,

|u(x)| =

∣∣∣∣∣−
∫
B(x,1)

u(y) dy

∣∣∣∣∣ ≤ α(n)

∫
B(x,1)

|u| dy ≤ Cα(n), (1963)

where α(n) is the measure of the unit ball in Rn. Because x ∈ Rn was arbitrarily chosen, it follows that

u is bounded. Thus, Liouville’s theorem54 asserts u is constant. �

54See Theorem 8 on page 30 of Evans’ PDE text.
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