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Introduction

We explore the use of asynchrony for speeding up convergence when

solving feasibility problems. The core idea is to take an inherently

sequential process and express it in a fashion that allows for parallel

implementations to occur in practice.
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Convex Feasibility Problem

Let {Ci}mi=1 be a finite collection of closed convex sets contained in

a Hilbert space H with a common fixed point. The associated

convex feasibility problem (CFP) is

Find x? ∈ C :=
m⋂
i=1

Ci,

where we assume C 6= ∅.

Note: For simplicity, we only consider the consistent case, although

extensions can be made for inconsistent problems.
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Common Fixed Points Problem

In this work, we consider a collection of operators {Ti}mi=1 in H for

which we set

Ci := fix (Ti) for all i ∈ {1, 2, . . . ,m}. (1)

The associated common fixed points problem is

Find x? ∈ C =
m⋂
i=1

fix (Ti) .
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Why use asynchronous algorithms?

Asynchronous algorithms offer

robustness to dropped network signals

easier coordination of nodes

better utilization of processing power

potentially higher-level parallelization

(possibly) faster and fewer iterations
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ASI Implementation

Figure 1: Schematic architecture model for ASI Algorithm. At the current

iteration k, the latest output N` = Sik(x̂k) from the `-th node is merged

with xk to form xk+1, overwriting the global variable xk. Here w ≤ m is

the number of nodes.
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The ASI Algorithm

Async Notation
Suppose we have w processing nodes (w ≤ m). For each time step

k, let dk ∈ Zw≥0 be the delay vector. If the last output from the i-th

node Ni was computing using xk−j , then (dk)i = j. For a control

sequence {ik} ⊆ {1, 2, . . . ,m} identifying the operator used to

compute xk+1 we set x̂k := xk−(dk)ik .

Note: We have only proven convergence using consistent reads, and

so we assume a queue is formed with locking when multiple updates

arrive simultaneously.

H. Heaton, Y. Censor ASI December 13, 2018 11 / 43



The ASI Algorithm

Async Notation Example
If k = 12 is the current step, i12 = 4, and the last output was from

the 4-th node and was generated using an iterate 3 steps out of

date, then
(dk)ik = (d12)4 = 3, (2)

and
x̂k = xk−(dk)ik = x12−3 = x9. (3)

Definition: Nonexpansive
An operator T : H → H is said to be nonexpansive provided

‖T (x)− T (y)‖ ≤ ‖x− y‖, for all x, y ∈ H. (4)
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The ASI Algorithm

The operator Si

Let {Ti}mi=1 be a collection of nonexpansive operators on H with a

common fixed point. For each i set

Si := Id− Ti, (5)

where Id is the identity operator.
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The ASI Algorithm

Almost cyclic control
A sequence {ik}k∈N is called an almost cyclic control on

I := {1, 2, . . . ,m} if {ik} ⊆ I and there exists K ≥ m such that for

each k ∈ N there is the containment I ⊆ {ik+1, ik+2, . . . , ik+K}.

Asynchronous Sequential Inertial (ASI) Algorithm
Let x1 ∈ H, {λk}k∈N be such that λk ∈ (0, 1), and {ik}k∈N be an

almost cyclic control on [m]. For each k ∈ N set

xk+1 :=


xk, if k ≤ supk∈N ‖dk‖∞,

xk − λkSik
(
x̂k
)
, otherwise.

(6)
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The ASI Algorithm

Remark
The assignment of xk+1 to xk for k ≤ supk∈N ‖dk‖∞ is necessary

to remove the possibility of having

x̂k = x`, (7)

with ` ≤ 0, which would be undefined since the iteration counter

start at k = 1. In other words, the out-of-date iteration x̂k cannot

be more stale than the number of iterations k that have taken place.
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The ASI Algorithm

The computation of xk+1 is expressible in two parts. Observe

xk+1 = xk − λikSik
(
x̂k
)

= xk − λik
(
x̂k − Tik

(
x̂k
))

= (1− λik)xk + λikTik

(
x̂k
)

︸ ︷︷ ︸
convex combination

+λik

(
xk − x̂k

)
︸ ︷︷ ︸
inertial term

.

(8)

Elsner et al. [2] in 1992 proved this iteration (without the inertial

term) converges for any choice of λi’s with λi ∈ (0, 1) when using

paracontractions in finite dimensions. Referring to figure below,

they set xk+1 = yk.
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The ASI Algorithm

xk

Tik(x̂k)

x̂k

PCik (x̂k)

yk

xk+1

CikCik+1

Figure 2: Illustration of a step of the ASI Algorithm with two convex sets

and the Ti’s as relaxed projections onto the sets. (Note the blue segments

are parallel and the length of the lower is scaled by λk.)
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Analysis of ASI

In what follows, assume {Ti}mi=1 is a finite family of nonexpansive

operators with a common fixed point and C :=
⋂m
i=1 Fix(Ti).

Lemma 1: Cluster Points are Fixed Points
Let y ∈ H be a weak cluster point of a sequence {xk}k∈N. If

‖Tixk − xk‖ −→ 0 for all i ∈ [m], then y ∈ C.

Proposition 1: Weak Convergence
Let {xk}k∈N be a sequence in H. If for all z ∈ C the sequence

{‖xk − z‖}k∈N converges and if ‖Tixk − xk‖ −→ 0 for all i ∈ [m],

then the sequence {xk}k∈N converges weakly to a point x? ∈ C.
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Analysis of ASI

We henceforth assume {xk}k∈N is a sequence generated by the ASI

algorithm and the delay vectors {dk}k∈N are uniformly bounded by

some τ ≥ 0, i.e.,

τ := sup
k∈N
‖dk‖∞ <∞. (9)

Remark
The classical error ‖xk − z‖ is not necessarily nonincreasing, i.e., it

is possible that there exists an index ` for which

‖x`+1 − z‖ > ‖x` − z‖. (10)
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Analysis of ASI

Lemma 2: A Fundamental Inequality
Let z ∈ C and µ > 0. Then

‖xk+1 − z‖2 ≤ ‖xk − z‖2 + µ
τ∑
`=1
‖xk+1−` − xk−`‖2

− λk [1− λk (1 + τ/µ)] ‖Sik(x̂k)‖2.
(11)

Note: It is in the proof of this lemma where we utilize the fact Tik
is nonexpansive, and so 1

2Sik = 1
2(Id− Tik) is firmly nonexpansive.
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Analysis of ASI

Lemma 3: Lyapunov convergence
If z ∈ C, and µ > 0, and ε > 0 is such that

0 < ε ≤ λk ≤
1

1 + τ(1/µ+ µ) + ε
, for all k ∈ N, (12)

then the sequence {ξk}k∈N defined by

ξk := ‖xk − z‖2 +
τ∑
`=1

c`‖xk+1−` − xk−`‖2, for all k ∈ N, (13)

converges, where

cj := (τ + 1− j)µ+ ε, for all j ∈ [τ + 1]. (14)

H. Heaton, Y. Censor ASI December 13, 2018 22 / 43



Analysis of ASI

Lemma 4
If the assumptions of Lemma 3 hold, then ‖xk+1 − xk‖ −→ 0 and

{‖xk − z‖}k∈N converges.

Lemma 5
If the assumptions of Lemma 3 hold, then ‖xk − x̂k‖ −→ 0.

Lemma 6
If the assumptions of Lemma 3 hold, then ‖Tixk − xk‖ −→ 0.
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Analysis of ASI

Convergence Theorem
Let {xk}k∈N be generated by the ASI algorithm and the operators

{Ti}mi=1 be nonexpansive. If the delay vectors are uniformly bounded

in sup norm by some τ ≥ 0 and there is ε > 0 such that

0 < ε ≤ λk ≤
1

2τ + 1 + ε
for all k ∈ N, (15)

then the sequence {xk}k∈N converges weakly to a solution x?, i.e.,

xk −⇀ x? ∈ C =
m⋂
i=1

fix(Ti). (16)
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Viewing Linear Systems as CFPs

Let A ∈ RM×N and b ∈ RM . Then for the i-th row of A, denoted

ai, define the hyperplane

Hi :=
{
x ∈ Rn : 〈ai, x〉 = bi

}
, (17)

where 〈·, ·〉 is the usual scalar product on Rn. Finding x? such that

Ax? = b is equivalent to having

x? ∈
M⋂
i=1

Hi. (18)

Define operators Ti such that fix(Ti) = Hi or some combination of

the Hi’s.
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Asynchronous Kazcmarz/ART Method

The Kaczmarz/ART method is defined via the iteration

xk+1 = (1− λk)xk + λkPik

(
xk
)

= xk − λk

(
〈aik , xk〉 − bik
‖aik‖2

)
aik .

(19)

Since the projection operators {Pi}Mi=1 are nonexpansive, we may

use the ASI algorithm framework to deduce the iteration

xk+1 = xk − λk

(
〈aik , x̂k〉 − bik
‖aik‖2

)
aik (20)

also converges to a solution. We call this ASI-ART.

H. Heaton, Y. Censor ASI December 13, 2018 27 / 43



ASI Implementation

Figure 3: Schematic architecture for ASI Algorithm. At the current

iteration k, the latest output N` = Sik(x̂k) from the `-th node is merged

with xk to form xk+1, overwriting the global variable xk. Here w ≤ m is

the number of nodes.
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Cimmino’s Method

The fully simultaneous version of ART is Cimmino’s method,

defined by the update

xk+1 = xk − λk
M

M∑
i=1

〈ai, xk〉 − bi
‖ai‖2

ai. (21)
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DROP Method

Although the average of all the projections may be desirable, the

1/M term severely limits the speed of convergence. However,

when A is sparse, the number of nonzero entries sj in the j-th

column of A satisfy 0 < sj �M . Censor et al. [1] (2008) proved

convergence using Diagonally Relaxed Orthogonal Projections

(DROP) where

xk+1
j := xkj −

λk
sj

M∑
i=1

〈ai, xk〉 − bi
‖ai‖2

aij for j = 1, 2, . . . , N . (22)
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DROP Method

Define the matrices

D := diag(1/sj) ∈ RN×N and W := diag(1/‖ai‖2) ∈ RM×M .

(23)

Then DROP becomes

xk+1 = xk − λkDATW
(
Axk − b

)
(24)

and

xk −→ x∗ = arg min
x∈RN

‖Ax− b‖W . (25)
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ASI-DROP

For a family of block indices {Bt}rt=1, indicating subsets of the rows

of A, we can associate the submatrix At with the rows in t ∈ Bt.

From each At, we may construct corresponding Dt, Wt, and bt.

ASI-DROP Algorithm
Let A ∈ RM×N , and b ∈ RM be given. Choose x1 ∈ RN , a sequence

{λk}k∈N such that λk ∈ (0, 1) for all k ∈ N, an almost cyclic control

{tk}k∈N on [r], and an appropriate family of blocks of indices {Bt}r
t=1.

Then set

xk+1 :=

x
k, if k ≤ supk∈N ‖dk‖∞,

xk − λkDtkA
T
tk
Wtk

(
Atk x̂

k − btk

)
, otherwise.
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ASI Algorithm Implementation

A Pseudocode Implementation of the ASI Algorithm
Initialization:

Let x ∈ H, λ ∈ (0, 1), and {ik}k∈N an almost cyclic control on [m]. Set k ← w + 1 and θ ← 1.

for ` ∈ [w]

Send x and i` to the `-th node to compute N` = Si`
(x)

endfor

Master Node Iteration:

while stopping criteria not met

Fetch set of node indices Fθ for outputs received at time θ

for ` ∈ Fθ
x← x− λN`,

k ← k + 1

Send x and ik to `-th slave node to compute N` = Sik
(x)

endfor

θ ← θ + 1

end while

Slave Node ` Iteration:

Read x and ik as input

Compute N` = Sik
(x)

Output N` = Sik
(x) to master node
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Small Model CT Problem

We illustrate the ASI algorithm on a feasibility problem (n.b. also

incorporating TV reduction drastically reduces the number of rows

needed). A linear system is generated modeling fan beam 2D CT

data with a 176,672 × 16,384 matrix.

Figure 4: 128x128 Shepp Logan Phantom
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Sample Plots

Figure 5: Averages of residual plots over 30 trials for EKN–DROP

algorithm (without inertial terms).

Remark
Observe more iterations are needed as the number of nodes

increases, yielding reduced efficiency and limited speedup.
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Sample Plots

Figure 6: Averages of residual plots over 30 trials for ASI–DROP

algorithm (with inertial terms).

Remark
Roughly the same number of iterations are needed as the number of

nodes increases (when convergence is obtained). But, in our code, a

queue forms with nodes waiting for the global variable xk to update.
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Sample Plots

Figure 7: Comparison of methods plots (with/without inertial terms).
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Sample Plots

Figure 8: Comparison of methods plots (with/without inertial terms).
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Small Model CT Problem Results

Here m = 40 operators Ti were used.

Method Measurement
number of slave nodes (w)

w = 1 w = 2 w = 4 w = 8 w = 10

ASI–DROP

time (sec) 751.5 418.0 226.9 140.3 163.8

# epochs 353.9 357.4 352.5 352.4 445.0

speedup NA 1.80 3.31 5.35 4.59

EKN–DROP
time (sec) 767.1 540.8 387.9 361.1 395.6

# epochs 353.9 427.5 561.4 840.7 989.0

speedup NA 1.42 1.98 2.12 1.94

Table 1: Reconstruction results with iterations stopped when

‖xk − x‖ < ε = 10−2. Reported values are averaged from 30 trials

repeated on the same data set.
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Conclusions

The ASI framework can be incorporated for robustness and speedup.

Several algorithms occur as special cases of the ASI method

(e.g., Kaczmarz’s method, Cimmino’s method, DROP, etc.).
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