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Abstract The common fixed points problem requires finding a point in the in-
tersection of fixed points sets of a finite collection of operators. Quickly solving
problems of this sort is of great practical importance for engineering and scien-
tific tasks (e.g., for computed tomography). Iterative methods for solving these
problems often employ a Krasnosel’skĭı-Mann type iteration. We present an Asyn-
chronous Sequential Inertial (ASI) algorithmic framework in a Hilbert space to
solve common fixed points problems with a collection of nonexpansive operators.
Our scheme allows use of out-of-date iterates when generating updates, thereby
enabling processing nodes to work simultaneously and without synchronization.
This method also includes inertial type extrapolation terms to increase the speed
of convergence. In particular, we extend the application of the recent “ARock algo-
rithm” [Peng, Z. et al. SIAM J. on Scientific Computing 38, A2851-2879, (2016)]
in the context of convex feasibility problems. Convergence of the ASI algorithm
is proven with no assumption on the distribution of delays, except that they be
uniformly bounded. Discussion is provided along with a computational example
showing the performance of the ASI algorithm applied in conjunction with a diag-
onally relaxed orthogonal projections (DROP) algorithm for estimating solutions
to large linear systems.
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1 Introduction

In this paper, we investigate common fixed points problems with nonexpansive
operators in Hilbert space. In this framework, we focus on the special case of con-
vex feasibility problems. Solving convex feasibility problems is of practical interest
because it has many applications, including areas in image recovery (e.g., com-
puted tomography (CT)) [25], radiation therapy treatment planning [12], electron
microscopy, seismology, and others, see, e.g., [25] for a collection of references.
Since the speed of individual processing cores stopped increasing significantly and
multi-core chips are becoming increasingly available [32], schemes for solving these
problems in parallel are of great use. Notably, these include block-iterative meth-
ods (see, e.g., [1, 6, 11, 17, 43] and further references in [13]) and string-averaging
methods (see, e.g., [15, 53]).

Although parallel methods are being developed to utilize several processing nodes
at once, these algorithms are often still expressible, at some level, as sequential al-
gorithms. For example, individual block operators may be computed using several
processing nodes in parallel, but these results must be merged together (e.g., via a
convex combination) and then passed to the next block operator in the sequence.
That is, the collection of block operators are applied successively. In this work, we
show that such inherently sequential algorithms can be executed in parallel with-
out the need for synchronization. This introduces robustness to dropped network
transmissions, introduces a higher level of parallelization, and allows multiple pro-
cessing nodes to run independently, thereby allowing faster computations of each
iterate.

Related Works. Asynchronous algorithms date back at least to the early work
of Chazan and Miranker [23], where they used the phrase “chaotic relaxations”
(now often termed asynchronous relaxations) for the solution of linear systems.
This was followed by numerous works (e.g., Strikwerda [55]). For a discussion on
asynchronous algorithms, see the summary work of Frommer and Szyld [31]. In
Bertsekas and Tsitsiklis [8], the distinction is made that totally asynchronous al-
gorithms can tolerate arbitrarily large update delays while partially asynchronous
algorithms are not guaranteed to work unless there is an upper bound on these
delays. The analysis in [8] is both for totally and partially synchronous algorithms.

Elsner, Koltracht, and Neumann [30] proved convergence of a sequence generated
by sequential application of partially asynchronous nonlinear paracontractions.
Their work was done in finite-dimensional Euclidean space and used bounded
delays of out-of-date information (i.e., partial asynchrony). This provides direct
application to solving linear systems of equations, e.g., through application of
Kaczmarz’s method [41], which is also known in the image reconstruction from
projections literature as the Algebraic Reconstruction Technique (ART), as it was
discovered there by Gordon, Bender, and Herman [34]. More recently, Peng, Xu,
Yan, and Yin [49] proposed the ARock algorithm, which is an asynchronous al-
gorithmic framework. The task at hand there is to find a fixed point of a single
separable nonexpansive operator. They accomplished this by generating updates
on random blocks of coordinates, using potentially out-of-date information. Sim-
ilarly to this original work on ARock [49] and the subsequent work by Hannah
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and Yin [35], we achieve our results through establishing the monotonicity of a
sequence that includes the classical error added to the error introduced from using
out-of-date iterates to perform the updates. The diversity of the Krasnosel’skĭı-
Mann iteration, to which our work is related as mentioned in the sequel, makes
it an interesting and valuable tool, see, e.g., [28] in this journal. Research ac-
tivity on asynchronous algorithms is receiving ever growing attention recently as
evidenced by some very interesting recent works of Combettes, Eckstein and co-
workers [26,27,29,39,40].

Advantages of Asynchronous Algorithms. Asynchronous methods have sev-
eral desirable features. First, each processing node performs its computations inde-
pendently whereas traditionally when iterative methods are executed using multi-
ple nodes the speed is limited by the slowest node. This means that asynchronous
approaches may reduce the average time required to generate successive updates,
especially when load-balancing differences do not occur among the nodes. Second,
asynchronous methods are robust to failed transmissions through a network. In a
synchronous model, if the output from a slave node is sent but does not make it
to the master node used to generate a new iterate xk+1, then the processing node
must perform its computation and send its output again before xk+1 can be com-
puted. However, in an asynchronous model, iterates are continually generated and
need not be in a specific order. Lastly, this approach may simplify the software code
to implement such algorithms since if we are able to estimate the bound on delays,
we do not need to keep track of when information is received from each node. In-
stead, we need only fetch the most recent output, compute the update xk+1, and
then send this back to the node for the next computation (c.f. Algorithm 4 below).

Our Contribution. This work establishes the convergence of a general partially
asynchronous iterative algorithmic framework in Hilbert space for common fixed
points problems. This allows out-of-date iterates to be used when there is an upper
bound on the delays. In practical terms, this enables processing nodes to run in
parallel while still executing an inherently sequential algorithm. And, this allows
for processors to be well-utilized even without load-balancing. The present work
is distinct from that of [30] since there the operators were paracontractions on
finite-dimensional Euclidean space while we use nonexpansive operators in Hilbert
space of possibly infinite dimension. Moreover, our algorithmic structure includes
an inertial term and our analysis takes a different approach. This work is chiefly
an extension of the ARock algorithm in the context of convex feasibility problems.
The ARock algorithm [35,49] and results in [35] generate a sequence stochastically
while the current work need not generate iterations stochastically. Our work also
differs from [8] since there fixed points were found for the special case of a nonex-
pansive operator with respect to the max norm on a Euclidean space.

Outline. In Section 2, we present the framework for the problem at hand and
define the notation for asynchrony used in this work. Our proposed algorithm is
given in Section 3. Section 4 presents our mathematical analysis, which leads to
the proof of the main result, Theorem 1. We then direct our attention to apply
Theorem 1 to solving large systems of linear equations in Section 5. There we show
that the Diagonally Relaxed Orthogonal Projection (DROP) algorithm of Censor,
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Elfving, Herman, and Nikazad [16] and Kaczmarz’s algorithm [41] for linear sys-
tems can be used within the ASI framework and provide a pseudo-code sample
implementation of the ASI algorithm with this application in mind. A computa-
tional example is provided in Section 7 applying the ASI algorithm with DROP
to a model CT image reconstruction problem. We make some concluding remarks
in Section 8.

2 Convex Feasibility Problem in a Common Fixed Points Framework

Let {Ci}mi=1 be a finite family of closed convex sets in a Hilbert space H with the
inner product 〈·, ·〉 and norm ‖ · ‖, respectively. The associated convex feasibility
problem (CFP) is

Find x∗ ∈ C :=
m⋂
i=1

Ci, (1)

where C 6= ∅. A common approach to solving (1) is to generate a sequence of
iterates {xk}k∈N in H with x1 ∈ H arbitrary via an iterative process

xk+1 := Qk

(
xk
)
, for all k ∈ N, (2)

where {Qk}k∈N is a sequence of operators. In this work, we instead use an iteration
of the form

xk+1 := Fk

(
xk, x̂k

)
, for all k ∈ N, (3)

where {Fk}k∈N is a sequence of mappings from H×H to H and x̂k either equals
xk, or equals a previous iterate xk−j for some j ∈ N. This enables out-of-date
information to be used in creating successive iterates.

Suppose we have a collection of w processing nodes. For each iteration index k, we
let dk ∈ Zw≥0 give the delay information for each of the nodes. This means that if

the last output from the i-th node Ni was computed using the iterate xk−j , then
the i-th component of dk gives this delay amount, i.e., (dk)i = j. Let {ik}k∈N be
an index sequence identifying the index of the operator whose output will be used
to compute xk+1, where ik ∈ {1, 2, . . . ,m} for all k ∈ N. Then x̂k is the last iterate
sent to the ik-th node and we write

x̂k := xk−(dk)ik , for all k ∈ N. (4)

For example, if k = 12 is the current iterative step, if i12 = 4, and if the last
output from the 4-th node was generated using an iterate that is now 3 iterative
steps out-of-date, then

(dk)ik = (d12)4 = 3, (5)

and so
x̂k = xk−(dk)ik = x12−3 = x9. (6)

This shows that the iterate x13 will be computed using x12 and x9.

The following definitions will be used in the sequel.
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Definition 1 Let H be a Hilbert space and D ⊆ H be nonempty. Then an oper-
ator T : D → H is

(i) firmly nonexpansive if

∀ x, y ∈ D, ‖T (x)− T (y)‖2 ≤ 〈x− y, T (x)− T (y)〉 ; (7)

(ii) nonexpansive if T is Lipschitz with constant 1 so that

∀ x, y ∈ D, ‖T (x)− T (y)‖ ≤ ‖x− y‖; (8)

(iii) quasi-nonexpansive if, denoting its fixed points set Fix(T ) := {x ∈ H | x =
T (x)},

∀ x ∈ D, y ∈ Fix(T ), ‖T (x)− y‖ ≤ ‖x− y‖. (9)

We say that T is strictly nonexpansive if the inequality in (8) is strict whenever
x − y 6= T (x) − T (y), and we say that T is strictly quasi-nonexpansive if the
inequality in (9) is strict whenever x /∈ Fix(T ).
More information on firmly nonexpansive operators can be found in the book [42],
see, in particular, page 42 there, and in modern books like [9].

Definition 2 Let T : H → H and α ∈ [0, 2]. The operator Tα : H → H defined
by Tα := (1 − α)Id + αT is called an α-relaxation of the operator T , where Id is
the identity operator.

Definition 3 If an operator Q : H → H is an α-relaxation of a nonexpansive
operator T : H → H with α ∈ (0, 1), then Q is said to be α-averaged. And, if the
particular value of α is not important, then we simply write that Q is averaged.

The notion of an averaged operator dates back as early as the work [3] where it
was called an averaged mapping, and these terms are both commonly used today.
However, for ease of expression in our analysis below, we will often refer to the
λ-relaxation of a nonexpansive operator (which yields an averaged operator for
our choices of λ).

Definition 4 A paracontraction is a continuous strictly quasi-nonexpansive oper-
ator.

More information on paracontractions can be found in the paper [21].

The collections of paracontractions and of nonexpansive operators form partially
overlapping but distinct subsets of the collection of quasi-nonexpansive operators.
Their intersection is nonempty since projections are contained in each of them.
However, the identity mapping and reflections are nonexpansive, but are not para-
contractions. Additionally, a paracontraction need not be Lipschitz continuous.
The following definition follows [22, Definition 5.1.1].

Definition 5 A sequence {ik}k∈N is called an almost cyclic control on [m] :=
{1, 2, . . . ,m} if ik ∈ [m] for all k ∈ N and there exists an integer M ≥ m (called the
almost cyclicality constant) such that, for each k ∈ N, [m] ⊆ {ik+1, ik+2, . . . , ik+M}.
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3 The Asynchronous Sequential Inertial (ASI) Algorithm

We now describe our proposed algorithm. Consider a collection of m nonexpansive
operators {Ti}mi=1 on H with a common fixed point. We seek to solve (1) where
Ci = Fix(Ti) for all i ∈ [m]. For notational convenience, we define

Si := Id− Ti, for all i ∈ [m]. (10)

Our Asynchronous Sequential Inertial (ASI) algorithm is as follows.

Algorithm 1: Asynchronous Sequential Inertial (ASI) Algorithm

Let x1 ∈ H be arbitrary, {λk}k∈N be such that λk ∈ (0, 1) for all k ∈ N, and
{ik}k∈N be an almost cyclic control on [m]. For each k ∈ N set

xk+1 :=

{
xk, if k ≤ supk∈N ‖dk‖∞,

xk − λkSik
(
x̂k
)
, otherwise.

(11)

In the special case where x̂k = xk and λk = λ for each k ∈ N and we have a single
operator T (i.e., m = 1), we obtain

xk+1 := Tλ

(
xk
)

= (1− λ)xk + λT
(
xk
)
, (12)

which is precisely the Krasnosel’skĭı-Mann (KM) iteration, see, e.g., [44, 47] for
the original works, Section 5.2 of the book [5] for a summary, and [51] for more
information on the KM iteration. This iteration does not allow any delays and
generates a sequence that weakly converges to a fixed point of T . The primary
result of our current work is Theorem 1, which states that a sequence {xk}k∈N
generated by the ASI algorithm converges weakly to a solution of (1) when the
sequence of delays {dk}k∈N is uniformly bounded in the sup norm by some τ ≥ 0
and the step sizes {λk}k∈N are bounded above by 1/(2τ + 1).

Before presenting our analysis, we provide a remark and illustration of the ASI
algorithm to give the reader some intuition. The computation of xk+1 can be
expressed in two parts. The first part is a convex combination of xk and Tik(x̂k)
to form the point

yk := (1− λk)xk + λkTik

(
x̂k
)
. (13)

The second part is an inertial term that estimates the direction of the solution,
given xk and x̂k. The term yk is added to the inertial term to yield xk+1, i.e.,

xk+1 = xk − λkSik
(
x̂k
)

= xk − λk
(
x̂k − Tik

(
x̂k
))

= (1− λk)xk + λkTik

(
x̂k
)

︸ ︷︷ ︸
convex combination

+λk

(
xk − x̂k

)
.︸ ︷︷ ︸

inertial term

(14)
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xk

Tik(x̂
k)

x̂k

PCik
(x̂k)

yk

xk+1

CikCik+1

Fig. 1: Illustration of a full iteration of the ASI algorithm with two convex sets
and the Ti’s as relaxed projections onto the sets.

Since the iterates are, on average, moving closer to a solution, this inertial term
may accelerate the convergence by using previous information along with the cur-
rent iterate to estimate the direction toward a solution. This effect of inertial terms
is known in the literature, see, e.g., [2, 45, 46, 48, 50]. The right-hand side of (14)
also illustrates the distinction of ASI from the algorithm of [30], which uses only
the convex combination part of (14) without the inertial term.

To illustrate the ASI algorithm graphically, let C1 and C2 be two closed convex
sets with nonempty intersection and let T1 and T2 be relaxations of the projections
PC1

and PC2
onto the sets C1 and C2, respectively. In this case, Figure 1 shows

how xk+1 is generated from xk and x̂k.

4 Mathematical Analysis of the ASI Algorithm

In this section, we provide several lemmas culminating in our primary convergence
result in Theorem 1. We begin with the following lemma on the demi-closedness
principle, which is a slight generalization of Cegielski [9, Lemma 3.2.5].

Lemma 1 Let {Ti}mi=1 be a finite family of nonexpansive operators with a common
fixed point and let y ∈ H be a weak cluster point of a sequence {xk}k∈N. If ‖Tixk−
xk‖ −→ 0 for all i ∈ [m], then

y ∈
m⋂
i=1

Fix(Ti). (15)
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Proof By hypothesis, there is a subsequence {xnk}k∈N ⊆ {xk}k∈N such that
xnk −⇀ y. Pick any j ∈ [m]. Then, using the triangle inequality, we deduce

lim inf
k→∞

‖xnk − y‖ ≥ lim inf
k→∞

‖Tjxnk − Tjy‖

= lim inf
k→∞

‖Tjxnk − xnk + xnk − Tjy‖

≥ lim inf
k→∞

(‖xnk − Tjy‖ − ‖Tjxnk − xnk‖)

= lim inf
k→∞

‖xnk − Tjy‖.

(16)

A 1967 lemma of Opial, see, e.g., [9, Lemma 3.2.4], states that if zk −⇀ z ∈ H and

z′ ∈ H with z 6= z′, then

lim inf
k→∞

‖zk − z′‖ > lim inf
k→∞

‖zk − z‖. (17)

Consequently, if Tjy 6= y, then (16) and (17) together imply

lim inf
k→∞

‖xnk − y‖ ≥ lim inf
k→∞

‖xnk − Tjy‖ > lim inf
k→∞

‖xnk − y‖, (18)

a contradiction. Whence, Tjy = y for each j and the result follows. �

This lemma helps obtain the following proposition, which is key in obtaining our
main result. The second half of the proof of Proposition 1 is based on the result
found in [9, Corollary 3.3.3], which is credited there to Bauschke and Borwein [4,
Theorem 2.16(ii)]. This corollary in [9] established that Fejér monotone sequences
with respect to a closed set have at most one weak cluster point. Their proof idea
is modified below to apply to the current setting. In connection to this proof, we
refer the reader also to the papers [51] and [52].

Proposition 1 Let {Ti}mi=1 be a family of nonexpansive operators on H with a
common fixed point and let {xk}k∈N be a sequence in H. If for every

z ∈ C :=
m⋂
i=1

Fix(Ti) (19)

the sequence {‖xk − z‖}k∈N converges and ‖Tixk − xk‖ −→ 0 for all i ∈ [m], then

the sequence {xk}k∈N converges weakly to some x∗ ∈ C.

Proof Let z ∈ C. The triangle inequality and the convergence of {‖xk − z‖}k∈N
imply that the sequence {xk}k∈N is bounded. Consequently, it has a weakly con-
vergent subsequence {xnk}k∈N ⊆ {xk}k∈N. For each such subsequence, we may
apply Lemma 1 to assert the weak cluster point is contained in C. We show below
that the sequence {xk}k∈N has at most one weak cluster point in C. Thus, there is
precisely one weak cluster point of {xk}k∈N and it is contained in C, from which
the result will follow.

It remains to verify that there is at most one cluster point of {xk}k∈N in C. Define
the function f : C → R by

f(z) := lim
k→∞

(
‖xk − z‖2 − ‖z‖2

)
, (20)
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which, by hypothesis, converges for each z ∈ C. Note that

‖xk − z‖2 − ‖z‖2 =
(
‖xk‖2 − 2 〈xk, z〉+ ‖z‖2

)
− ‖z‖2 = ‖xk‖2 − 2 〈xk, z〉 . (21)

Now let {xmk}k∈N and {xnk}k∈N be subsequences of {xk}k∈N weakly converging
to two distinct limit points p and q in C, respectively. Then

2 lim
k→∞

〈xk, p− q〉 = lim
k→∞

((
‖xk‖2 − 2 〈xk, q〉

)
−
(
‖xk‖2 − 2 〈xk, p〉

))
= f(q)− f(p),

(22)

i.e., the limit exists. However,

lim
k→∞

〈xmk , p− q〉 = 〈p, p− q〉 , (23)

and
lim
k→∞

〈xnk , p− q〉 = 〈q, p− q〉 . (24)

Since the limit in (22) exists, the limits in (23) and (24) must be equal, which
implies

〈p, p− q〉 = 〈q, p− q〉 =⇒ ‖p− q‖2 = 0 =⇒ p = q. (25)

This shows the weak cluster point is unique and completes the proof. �

The above proposition is essential for our convergence result. All our subsequent
lemmas compiled together show that the assumptions of Proposition 1 hold for
sequences generated by the ASI algorithm.

We outline the remainder of this section as follows. We first give in Lemma 2 a
fundamental inequality about sequences {xk}k∈N generated by the ASI algorithm.
This inequality is used in Lemma 3 to show that the sequence {ξk}k∈N converges,
where ξk is a sum of the classical distance ‖xk − z‖ for some z ∈ C and finitely
many terms of the form ci‖xk+1−i − xk−i‖2. We then use the inequality (39) in
the proof of this lemma to verify that ‖xk+1 − xk‖ −→ 0 and that the sequence

{‖xk − z‖}k∈N converges for each z ∈ C. Following this, in Lemma 6 we prove
that ‖Tixk − xk‖ −→ 0 for each i ∈ [m]. With these results, we show that the

hypotheses of Proposition 1 hold for any sequence {xk}k∈N generated by the ASI
algorithm. In what follows, we always make the following assumption.

Assumption 1 The delay vectors {dk}k∈N are uniformly bounded in sup norm
by some τ ≥ 0.

Lemma 2 Let z ∈ C and let µ > 0 and suppose Assumption 1 holds. If {xk}k∈N
is any sequence generated by the ASI algorithm, then∥∥∥xk+1 − z

∥∥∥2 ≤ ∥∥∥xk − z∥∥∥2 + µ
τ∑
`=1

∥∥∥xk+1−` − xk−`
∥∥∥2

− λk
∥∥∥Sik (x̂k)∥∥∥2 (1− λk (1 + τ/µ)

)
.

(26)
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Proof First observe that

‖xk+1 − z‖2 = ‖xk − λkSik
(
x̂k
)
− z‖2

= ‖xk − z‖2 − 2λk 〈xk − z, Sik
(
x̂k
)
〉+ λ2k‖Sik

(
x̂k
)
‖2.

(27)

We may split the cross-term into the two expressions αk and βk via

− 2λk 〈Sik
(
x̂k
)
, xk − z〉 = −2λk 〈Sik

(
x̂k
)
, x̂k − z〉︸ ︷︷ ︸

αk

+ 2λk 〈Sik
(
x̂k
)
, xk − x̂k〉︸ ︷︷ ︸

βk

.

(28)
Note that 1

2Sik = 1
2 (Id− Tik) is firmly nonexpansive and that 1

2Sik(z) = 0. Thus,

‖Sik
(
x̂k
)
‖2 = 4‖1

2
Sik

(
x̂k
)
‖2

= 4‖1

2
Sik

(
x̂k
)
− 1

2
Sik(z)‖2

≤ 4 〈1
2
Sik

(
x̂k
)
− 1

2
Sik(z), x̂k − z〉

= 2 〈Sik
(
x̂k
)
, x̂k − z〉 .

(29)

This implies

αk = −2λk 〈Sik
(
x̂k
)
, x̂k − z〉 ≤ −λk‖Sik

(
x̂k
)
‖2. (30)

Application of the triangle inequality and the fact that ‖dk‖∞ ≤ τ for all k ∈ N
yield

βk = −2λk 〈Sik
(
x̂k
)
, xk − x̂k〉

= −2λk

(dk)ik∑
`=1

〈Sik
(
x̂k
)
, xk+1−` − xk−`〉

≤ 2λk

(dk)ik∑
`=1

‖Sik
(
x̂k
)
‖‖xk+1−` − xk−`‖

≤ 2λk

τ∑
`=1

‖Sik
(
x̂k
)
‖‖xk+1−` − xk−`‖.

(31)

Note that the second line in (31) holds since the sum is telescoping and that the
final line holds since ‖dk‖∞ ≤ τ . Using the fact that 0 ≤ (a− b)2 = a2 + b2 − 2ab
for a, b ∈ R implies ab ≤ 1

2 (a2 + b2), we deduce

βk ≤ λk
τ∑
`=1

λk
µ
‖Sik

(
x̂k
)
‖2 +

µ

λk
‖xk+1−` − xk−`‖2

=
τλ2k
µ
‖Sik

(
x̂k
)
‖2 + µ

τ∑
`=1

‖xk+1−` − xk−`‖2.
(32)

Combining (27), (30) and (32), we obtain the desired result. �
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To prove the convergence of iterates to solutions of fixed point problems, we typi-
cally need some sort of monotonicity. However, when using out-of-date iterates to
generate the sequence, the inequality ‖xk+1 − z‖ ≤ ‖xk − z‖ does not necessarily
hold. In [35], the authors were able to construct a sequence that is monotonic in
expectation by including both the classical error ‖xk − z‖ and terms of the form
c`‖xk+1−` − xk−`‖. We also use the idea of adding terms of this form with the
inequality in Lemma 2 to obtain convergence of a sequence that sums the classical
error and a finite number of these discrepancy terms. This is stated formally in
the following lemma.

Lemma 3 Let z ∈ C and let µ > 0 and suppose Assumption 1 holds. Let {xk}k∈N
be any sequence generated by the ASI algorithm. Assume there is ε > 0 such that

0 < ε ≤ λk ≤
1

1 + τ(1/µ+ µ) + ε
, for all k ∈ N. (33)

The sequence {ξk}k∈N defined by

ξk := ‖xk − z‖2 +
τ∑
`=1

c`‖xk+1−` − xk−`‖2, (34)

where
cj := (τ + 1− j)µ+ ε, for all j ∈ [τ + 1], (35)

is a convergent sequence.

Proof The sequence {ξk}k∈N is nonnegative; thus, it suffices to verify that it is
monotonically decreasing. By Lemma 2, we have

ξk+1 = ‖xk+1 − z‖2 +
τ∑
`=1

c`‖xk+2−` − xk+1−`‖2

≤ ‖xk − z‖2 +
τ∑
`=1

µ‖xk+1−` − xk−`‖2

− λk‖Sik
(
x̂k
)
‖2
(

1− λk(1 + τ/µ)
)

+
τ∑
`=1

c`‖xk+2−` − xk+1−`‖2.

(36)

Reindexing the sums and noting µ+ cj+1 = cj , this simplifies to

ξk+1 ≤ ‖xk − z‖2 +
τ∑
j=1

(µ+ cj+1) ‖xk+1−j − xk−j‖2 + c1‖xk+1 − xk‖2

− λk‖Sik
(
x̂k
)
‖2
(

1− λk(1 + τ/µ)
)
− cτ+1‖xk+1−τ − xk−τ‖2

= ξk + c1‖xk+1 − xk‖2 − cτ+1‖xk+1−τ − xk−τ‖2

− λk‖Sik
(
x̂k
)
‖2
(

1− λk(1 + τ/µ)
)
.

(37)

The ASI algorithm generates successive iterates such that

‖xk+1 − xk‖2 ≤ ‖xk − λkSik
(
x̂k
)
− xk‖2 = λ2k‖Sik

(
x̂k
)
‖2. (38)
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Consequently,

ξk+1 ≤ ξk−λk‖Sik
(
x̂k
)
‖2
(

1−λk(1+τ/µ+c1)
)
−cτ+1‖xk+1−τ −xk−τ‖2. (39)

With our assumption in (33), the fact c1 = τµ + ε, and the fact cτ+1 = ε > 0,
(39) shows that ξk+1 ≤ ξk, for all k ∈ N, from which the result follows. �

Remark 1 Naturally, we may seek to choose µ that maximizes the allowable step
sizes. Such a choice of µ minimizes the function f : (0,∞)→ R defined by f(x) :=
x+1/x. Since the single critical point and minimizer of f occurs at x = 1, choosing
µ = 1 in Lemma 3 yields the optimal step size bound.

Although the above lemma establishes the convergence of {ξk}k∈N, it does not
guarantee that a sequence generated by terms of the form ‖xk − z‖ will converge.
However, we are able to verify this in the following lemma by noting the inequality
in (39).

Lemma 4 If the assumptions of Lemma 3 hold, then ‖xk+1 − xk‖ −→ 0 and the

sequence {‖xk − z‖}k∈N converges.

Proof The inequality (39) implies

0 ≤ cτ+1‖xk+1−τ − xk−τ‖2 ≤ ξk − ξk+1. (40)

Letting k −→∞, the convergence of {ξk}k∈N together with the squeeze (sandwich)

theorem implies

lim
k→∞

cτ+1‖xk+1−τ − xk−τ‖2 = 0. (41)

Since cτ+1 = ε > 0, we obtain

lim
k→∞

‖xk+1 − xk‖ = 0. (42)

Let ξ∗ be the limit of {ξk}k∈N. Then combining (34) and (42) and letting k −→∞
yields

ξ∗ = lim
k→∞

ξk = lim
k→∞

‖xk − z‖2, (43)

from which the result follows since the square root function is continuous. �

Lemma 5 If a sequence {xk}k∈N satisfies ‖xk+1 − xk‖ −→ 0 and Assumption 1

holds, then ‖xk − x̂k‖ −→ 0.

Proof The fact that ‖dk‖∞ ≤ τ , for all k ∈ N, yields

0 ≤ ‖xk − x̂k‖ = ‖xk − xk−(dk)ik ‖ ≤
τ∑
j=1

‖xk+1−j − xk−j‖. (44)

Letting k −→ ∞ in (44), the right-hand side goes to zero since the sum contains

finitely many terms. The result is then obtained through the squeeze theorem. �
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Lemma 6 Let {xk}k∈N be a sequence generated by the ASI algorithm. Suppose
there is ε > 0 such that λk ≥ ε, for all k ∈ N, and Assumption 1 holds. If
‖xk+1 − xk‖ −→ 0, then ‖Tixk − xk‖ −→ 0, for each i ∈ [m].

Proof Let i ∈ [m] and let Ti,λ be the λ-relaxation of Ti. If {tk} is an increasing
sequence such that tk ∈ N, for all k ∈ N, then

‖Ti,λtk
(xk)−xk‖ = ‖(1−λtk)xk+λtkTi(x

k)−xk‖ = λtk‖Ti(x
k)−xk‖ ≥ ε‖Ti(xk)−xk‖.

(45)
This inequality reveals that if ‖Ti,λtk

(xk) − xk‖ −→ 0, then ‖Ti(xk) − xk‖ −→ 0.

Next, we verify that the first limit holds, by setting, for each k ∈ N, tk to be the
smallest index greater than or equal to k such that itk = i. This implies

xtk+1 = xtk − λtkSi
(
x̂tk
)

= xtk − λtk x̂
tk + λiTi

(
x̂tk
)

= Ti,λtk

(
x̂tk
)

+
(
x̂tk − x̂tk

)
.

(46)

Observe also that

‖Ti,λtk

(
xk
)
− xtk+1‖ = ‖Ti,λtk

(
xk
)
− Ti,λk

(
x̂tk
)
−
(
xtk − x̂tk

)
‖

≤ ‖Ti,λtk

(
xk
)
− Ti,λtk

(
x̂tk
)
‖+ ‖xtk − x̂tk‖

≤ ‖xk − x̂tk‖+ ‖xtk − x̂tk‖,

(47)

where the first equality holds by (46) and the final inequality follows from the
fact the λtk -relaxation of a nonexpansive operator Ti is nonexpansive. Due to the
bound on delays and the almost cyclicity of {ik}k∈N, we know that x̂tk = xj for
some k − τ ≤ j ≤ tk ≤ k + M , where M is the almost cyclicality constant of
{ik}k∈N. Thus, repeated application of the triangle inequality with (47) yields

‖Ti,λtk

(
xk
)
− xtk+1‖ ≤ ‖xk − x̂tk‖+ ‖xtk − x̂tk‖

≤
M−1∑
`=−τ

‖xk+`+1 − xk+`‖+

M−1∑
`=−τ

‖xk+`+1 − xk+`‖

= 2

M−1∑
`=−τ

‖xk+`+1 − xk+`‖.

(48)

In a similar fashion, we deduce

‖Ti,λtk
(xk)− xk‖ ≤ ‖Ti,λtk

(xk)− xtk+1‖+ ‖xtk+1 − xk‖

≤ 2

M−1∑
`=−τ

‖xk+`+1 − xk+`‖+ ‖xtk+1 − xk‖

≤ 3

M−1∑
`=−τ

‖xk+`+1 − xk+`‖.

(49)

Letting k −→ ∞, the right-hand side goes to zero since it is the sum of a finite

number of terms that, by hypothesis, converge to zero. This verifies ‖Ti,λk
(xk)−

xk‖ −→ 0, from which the result follows. �
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Now we can state and prove the main result of this paper. As noted previously,
this result is about a generalization of the procedure that successively applies the
λk-relaxation of the operator Tik , for all k ∈ N, which occurs when τ = 0.

Theorem 1 Let {xk}k∈N be a sequence generated by the ASI algorithm and sup-
pose Assumption 1 holds. If there is ε > 0 such that

0 < ε ≤ λk ≤
1

2τ + 1 + ε
, for all k ∈ N, (50)

then the sequence {xk}k∈N converges weakly to a common fixed point x∗ of the
family {Ti}mi=1, i.e.,

xk −⇀ x∗ ∈ C =
m⋂
i=1

Fix(Ti). (51)

Proof The given hypotheses make the assumptions of Lemma 3 hold, taking µ = 1.
With these, Lemma 4 then asserts that ‖xk+1 − xk‖ −→ 0 and {‖xk − z‖}k∈N
converges for any z ∈ C. The fact ‖xk+1−xk‖ −→ 0 enables Lemma 6 to be applied

to deduce ‖Ti(xk) − xk‖ −→ 0, for each i ∈ [m]. This shows the assumptions of

Proposition 1 hold and completes the proof. �

5 Application to Linear Systems

In this section, we present an application for fast solution of linear systems of
equations. Chiefly, we prove that the operators used in the method of Diagonally
Relaxed Orthogonal Projections (DROP) [16] are nonexpansive and, thus, can be
incorporated into the ASI algorithm. Let A ∈ RM×N and b ∈ RM , and consider
the problem

Find x ∈ RN such that Ax = b. (52)

We assume that each row and column of the matrix A is nonzero, that A is large,
and that the system is overdetermined. We provide background material pertain-
ing to projection methods and then show that the ASI algorithm can be used to
form an asynchronous version of DROP, which we call ASI–DROP.

Each equation in the linear system can be associated with a closed and convex
subset of RN , namely, the hyperplane

Hi := {x ∈ RN | 〈ai, x〉 = bi}, for all i ∈ [M ], (53)

where ai is the i-th row of A. The projection Pi onto Hi is given by

Pi(x) = x+
bi − 〈ai, x〉
‖ai‖2 ai. (54)

In order to discuss blocks of rows from the matrix A, let {Bt}rt=1 be a collection
of sets of indices such that Bt ⊆ [M ], for all t, and

[M ] =
r⋃
t=1

Bt. (55)

Note that there may be overlapping Bt’s, i.e., it is possible that there exists t 6= s
such that Bt ∩Bs 6= ∅.
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5.1 Diagonally Relaxed Orthogonal Projections

The DROP algorithm is a modification of Cimmino’s simultaneous projections
method [24], which uses the iterative process

xk+1 := xk − 1

M

M∑
i=1

〈ai, x〉 − bi
‖ai‖2 ai. (56)

When M is large, the term 1/M restricts the progress of the iteration. Letting sj
be the number of nonzero entries in the j-th column of A, the DROP algorithm
replaces the 1/M term in (56) with 1/sj to define component-wise updates via

xk+1
j := xkj −

1

sj

M∑
i=1

〈ai, x〉 − bi
‖ai‖2 aij , for all j ∈ [N ]. (57)

This update (57) first appeared in the CAV paper [19], then in the BICAV paper
[18], and also in the paper that analyzed the convergence of CAV and BICAV [14].
Note that no proof of convergence was provided for (57) until the DROP paper [16]
and the CARP paper [33], where we note that (57) is a special case of CARP when
each block consists of a single equation, which is called CARP1. If A is sparse, then
sj �M and this approach effectively makes the update xk+1

j depend upon xkj and

the average over the summands for which aij is nonzero. For each t ∈ [r], define At
and bt to be the submatrix and subvector of A and b, respectively, corresponding
to the row indices in Bt, and define the matrices

Wt := diag
(
‖ai‖−2

)
, Dt := diag (1/sj) , At := AtD

1/2
t , (58)

where the i-th diagonal entry of Wt ∈ RM×M is the inverse of the square of the
norm of the i-th row in At and the j-th diagonal entry in Dt ∈ RN×N gives the
number of nonzero entries in the j-th column of At. For each t ∈ [r] define the
operator Ut : RN → RN by

Ut(y) := y −ATt Wt

(
Aty − bt

)
, (59)

where bt is the subvector of b corresponding to the row indices in Bt and here T
stands for matrix transposition. Given an almost cyclic control {tk}k∈N on [r], a
special case of the DROP algorithm is given by the process

yk+1 := Utk

(
yk
)
. (60)

The following proposition shows this formulation of DROP can be used with the
ASI algorithm.

Proposition 2 Each operator Ut defined by (59) is nonexpansive with respect to
the Euclidean norm.

Proof Let t ∈ [r] and let (µ, v) be an eigenpair of A
T
t WtAt so that µv = A

T
t WtAtv.

Multiplying by the transpose of v and dividing by 〈v, v〉 yields

µ =
〈v,ATt WtAtv〉
〈v, v〉 =

‖Atv‖2Wt

‖v‖22
≥ 0, (61)
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where ‖v‖22 = 〈v, v〉 with 〈·, ·〉 the inner product in RN and ‖ · ‖Wt
is the Wt-norm

defined by ‖y‖2Wt
= 〈y,Wty〉. Note that Wt is symmetric and positive definite;

thus, this is well-defined. Since the matrix A
T
t WtAt is symmetric, its eigenvalues

are real. Additionally, A
T
t WtAt andDtA

T
t WtAt have the same eigenvalues. Indeed,

using det for determinants and Id for the identity matrix, we use properties of
determinants to see that

det
(
µId−DtATt WtAt

)
= det(D

−1/2
t ) det

(
µId−DtATt WtAt

)
det(D

1/2
t )

= det
(
µId−D1/2

t ATt WtAtD
1/2
t

)
= det

(
µId−ATt WtAt

)
.

(62)

By [16, Lemma 2.2], we know that ρ(DtA
T
t WtAt) ≤ 1. Consequently, µ ∈ [0, 1].

Note that

(Id−ATt WtAt)v = (1− µ)v, (63)

and (1− µ) ∈ [0, 1], which implies ρ(Id−ATt WtAt) ≤ 1. Moreover, because (Id−
A
T
t WtAt) is symmetric,

‖Id−ATt WtAt‖2 = ρ(Id−ATt WtAt) ≤ 1. (64)

Whence, for any y1, y2 ∈ RN

‖Ut(y1)− Ut(y2)‖2 =
∥∥∥(Id−ATt WtAt

)(
y1 − y2

)∥∥∥
2

≤ ‖Id−ATt WtAt‖2‖y1 − y2‖2
≤ ‖y1 − y2‖2,

(65)

and we conclude that Ut is nonexpansive. �

The ASI algorithm with these DROP operators, henceforth called the ASI–DROP
algorithm, takes the following form. Its presentation is followed by a theorem
guaranteeing its convergence.

Algorithm 2: ASI–DROP

Initialization: Let A ∈ RM×N and b ∈ RM be given. Choose any
x1 ∈ RN , a sequence {λk}k∈N such that λk ∈ (0, 1) for all k ∈ N, an almost
cyclic control {tk}k∈N on [r], and a family of blocks of indices {Bt}rt=1

satisfying (55).

Iteration: For each k ∈ N set

xk+1 :=

{
xk, if k ≤ supk∈N ‖dk‖∞,

xk − λkDtkATtkWtk

(
Atk x̂

k − btk
)
, otherwise.

(66)
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Theorem 2 Let {xk}k∈N be a sequence generated by the ASI–DROP algorithm. If
the linear system (52) is consistent, and if the delay vectors are uniformly bounded
in the sup norm by some τ ≥ 0, and if there is ε > 0 such that

0 < ε ≤ λk ≤
1

2τ + 1 + ε
, for all k ∈ N, (67)

then the sequence {xk}k∈N converges to a solution of the linear system (52).

Proof For each t, set St := Id− Ut. Proposition 2 and Theorem 1 imply that the
sequence {yk}k∈N generated by the ASI algorithm converge to a fixed point of Ut.

With the above notations and with Ut as in (59), define for each t

St := Id− Ut. (68)

Let y∗ = lim
k→∞

yk. Then for each t ∈ [r]

bt = Aty
∗ = AtD

1/2
t y∗ = Atx

∗, (69)

taking x∗ := D1/2y∗. This implies that b = AD1/2y∗ = Ax∗. For each k ∈ N set

xk = D
1/2
tk

yk. Then xk −→ x∗ where x∗ is a solution to the linear system (52).

Moreover, the active step describing the iterate updates is

xk+1 = D
1/2
tk

yk+1

= D
1/2
tk

(
yk − λkStk

(
x̂k
))

= D
1/2
tk

(
yk − λk(I − Utk)

(
ŷk
))

= D
1/2
tk

(
yk − λkA

T
tkWtk

(
Atk ŷ

k − btk
))

= xk − λkDtkA
T
tkWtk

(
Atk x̂

k − btk
)
.

(70)

This completes the proof. �

5.2 Kaczmarz’s and Other Methods

Kaczmarz Method. A popular method for approximating solutions to linear
systems is that of Kaczmarz [41]. In the context of computed tomography, this
method is known as the Algebraic Reconstruction Technique (ART) since it was
rediscovered there by Gordon, Bender, and Herman in [34]. Kaczmarz’s method
generates updates by successively projecting each iterate xk onto an individual
hyperplane Hi. For an almost cyclic control {ik}k∈N on [M ] and a sequence of
scalars {λk}k∈N, updates in the relaxed version of Kaczmarz’s method are given
by the iteration

xk+1 = (1− λk)xk + λkPik

(
xk
)

= xk + λk

(
bik − 〈aik , xk〉
‖aik‖2

)
aik , (71)
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where Pik is as in (54). Since the projection operators {Pi}Mi=1 are nonexpansive,
we use them in the ASI framework to construct an asynchronous generalization.
For each i ∈ [M ] set, analogously to (10),

Si(x) := (Id− Pi)(x) =
〈ai, x〉 − bi
‖ai‖2 ai. (72)

Then the ASI–ART method is presented formally in Algorithm 3.

Algorithm 3: ASI-ART

Initialization: Let A ∈ RM×N and b ∈ RM be given. Choose any
x1 ∈ RN , a sequence {λk}k∈N such that λk ∈ (0, 1) for all k ∈ N, and an
almost cyclic control {ik}k∈N on [M ].

Iteration: For each k ∈ N set

xk+1 :=

xk, if k ≤ supk∈N ‖dk‖∞,

xk − λk
〈aik , x̂k〉 − bik
‖aik‖2 aik , otherwise.

(73)

Other Methods. The ASI framework can be applied in conjunction with other
projection methods. These include the valiant projection method (VPM) of Censor
and Mansour [20], which is known as the automatic relaxation method (ARM) of
Censor [10] when applied to interval linear inequalities. We conjecture the intrepid
method of Bauschke, Iorio, and Koch [7], which is known as the ART3 method
of Herman [37] when applied to linear systems, may also be used within the ASI
framework.

6 ASI Algorithm Implementation

A sample pseudocode of the ASI algorithm is presented formally in Algorithm 4
and illustrated in Figure 2. Our model is for a master/slave type architecture.
Referring to the notation of Section 3, let x ∈ H be arbitrary, fix λ ∈ (0, 1), and
let {ik}k∈N be an almost cyclic control on [m]. First the initial iterate x is sent to
each of the w processing nodes and we let the `-th node compute N` := Si`(x).
The iteration counter k is then set to w + 1 and the time step counter θ to 1.
Note the time step θ is distinct from the iteration step k since multiple nodes may
complete their updates at the same time step, thereby enabling the iteration step
to exceed the time step (i.e., k ≥ θ). The iterative process proceeds by fetching the
collection of indices Fθ of nodes that produce outputs at time θ. Then, for each
` ∈ Fθ, we update x with x− λN`, where N` is the output of the `-th node. Then
x is sent to the `-th node to compute N` = Sik(x). After the loop occurs over all
elements of Fθ, we increment θ by 1 and repeat the iteration step if the stopping
criteria are not met.

In the schematic Figure 2, each processing node is represented by a circle with N`
inside. At iteration step k, the most recent output from the collection of nodes
is fetched, which is precisely N` = Sik(x̂k) when the most recent output is from
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Algorithm 4: A Pseudocode Implementation of the ASI Algorithm

Initialization:
Let x ∈ H, λ ∈ (0, 1), and {ik}k∈N an almost cyclic control on [m].
for ` ∈ [w]

Send x and i` to the `-th node to compute N` = Si`(x)
endfor
k ← w + 1
θ ← 1

Master Node Iteration:
while stopping criteria not met

Fetch set of node indices Fθ for outputs received at time θ
for ` ∈ Fθ

x← x− λN`
k ← k + 1
Send x and ik to `-th slave node to compute N` = Sik(x)

endfor
θ ← θ + 1

end while

Slave Node ` Iteration:
Read x and ik as input
Compute N` = Sik(x)
Output N` = Sik(x) to master node

the `-th node. This is then merged with xk as in the ASI algorithm to form the
new iterate xk+1, overwriting xk. The output xk+1 is then fed to the `-th node
to compute N` = Sik+1(xk+1). This effectively sets k ← k + 1. Then the process
repeats, fetching the most recent node outputs. In this master/slave framework,
each of the w slave nodes applies operators from the family {Si}mi=1 and the master
node continually computes the updates by merging xk with Sik(x̂k).

Remark 2 Implementation of Algorithm 2 can be done using the pseudocode in
Algorithm 4 by taking H = RN , ik = tk for all k ∈ N, m = r, and {Ut}rt=1 =
{Ti}mi=1, the family of DROP operators associated with the family of blocks of
indices {Bt}rt=1 in Algorithm 2. Similarly, Algorithm 3 can be implemented using
the pseudocode in Algorithm 4 by taking H = RN and m = M .

Remark 3 The indexing of the slave nodes can be set up as follows. First locally
store subcollections of the family of operators {Si}mi=1 to each slave node. Then
let each node progress cyclically through the operators it has stored locally. Note
that, although each slave node may proceed in a cyclic fashion, the order in which
outputs arrive to the master node may not be cyclic. This can result from the
variation in computation times on each node and, thus, arrival times to the master
node. Despite this, the arrival of outputs to the master node will still occur in an
almost cyclic fashion, as needed.
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Sik(x̂
k)

xk

xk+1

N1

...
N`

...
Nw

Fig. 2: Schematic architecture for the ASI algorithm. At the current iteration k
the latest output N`, which is precisely Sik(x̂k) in the ASI algorithm, from the
`-th node is merged with xk via a linear combination to form the update xk+1,
overwriting the global variable xk. Here w ≤ m is the number of processing nodes.

7 A Computational Example

The ASI algorithm is written in a sequential manner; however, we note that being
able to use out-of-date iterations enables all the processing nodes to work simulta-
neously. The processing nodes are also able to work independently of each other.
Below we apply our results in a computational example with a model computed
tomography (CT) image reconstruction problem in Matlab. We use Algorithm 4
to implement Algorithm 2 and take r = m = 40 and tk = ik, for all k ∈ N.

7.1 Experiment Setup

In our computational example, we provide results using the method of Diagonally
Relaxed Orthogonal Projections (DROP) [16]. We implement DROP using both
the ASI algorithm and the form of asynchrony of [30], i.e., without the inertial
terms. We refer to these as ASI–DROP and EKN–DROP, respectively (EKN is
for the authors’ names of [30]). Note that convergence for EKN–DROP is not
proven since we have not validated that the DROP operators are paracontrac-
tions. However, as expected, this method converged in all our experiments.

We consider an image reconstruction model of CT image reconstruction. Our spe-
cific aim is to show how an inherently sequential algorithm can be executed by
multiple nodes working in parallel and asynchronously. This example illustrates
the speedup of DROP for solving linear systems and the speedup that occurs when
using the ASI–DROP algorithm. The task at hand is to solve (52) where A is a
given 176,672×16,384 matrix and b is a vector with 176,672 entries. The computa-
tional work was done in Matlab and the quantities A and b were generated using
the Shepp-Logan phantom [54] in Figure 3 and the AIR Tools Matlab package [36].
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Fig. 3: A 128x128 digitization of the Shepp-Logan phantom [54].

Method Measurement
number of slave nodes (w)

w = 1 w = 2 w = 4 w = 8 w = 10

ASI–DROP
time (sec) 751.5 418.0 226.9 140.3 163.8
# epochs 353.9 357.4 352.5 352.4 445.0
speedup NA 1.80 3.31 5.35 4.59

EKN–DROP
time (sec) 767.1 540.8 387.9 361.1 395.6
# epochs 353.9 427.5 561.4 840.7 989.0
speedup NA 1.42 1.98 2.12 1.94

Table 1: Reconstruction results with iterations stopped when ‖xk−x‖ < ε = 10−2.
Reported values are averaged from 30 trials repeated on the same data set.

In our implementations, we generated {ik}k∈N following Remark 3, i.e., the family
of operators {Si}mi=1 is loaded into memory and each slave node accesses a subcol-
lection of this family and applies the operators from that subcollection cyclically.
Execution was stopped when sufficient proximity was reached. In particular, we
stopped the iterations when ‖xk − x‖ < ε = 10−2, where x is the true image vec-
tor, i.e., the “phantom” from which A and b were reconstructed for the purpose of
the reconstruction experiment. We define an epoch to be the number of operators
m, which in the case of our experiment was m = 40. The computation cluster
used had 49.5 GB of RAM and 12 Intel Xeon X5650 processors with frequency
2.67 GHz. For more in-depth material on CT image reconstruction, we refer the
reader, e.g., to Herman’s book [38]. For the asynchronous calls to each process-
ing node, we used the parfeval command in Matlab’s Parallel Computing toolbox.

7.2 Numerical Results

Reconstruction results are provided in Table 1. Note that the number of itera-
tions required for the EKN–DROP approach increases as the number of nodes
w increases. However, in some cases, fewer iterations are required using the ASI–
DROP algorithm. Furthermore, there is speedup as the number of nodes increases,
given by 1.80, 3.31, 5.35, and 4.59 for 2, 4, 8, and 10 nodes, respectively. With
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w = 12 nodes, the ASI algorithm does not converge with the step size λ = 0.20, but
does converge if the step-size λ is sufficiently reduced (e.g., by taking λ = 0.15).
In comparison, for EKN–DROP the speedup was 1.42, 1.98, 2.12, 1.94 for 2, 4,
8, and 10 nodes, respectively. The fastest reconstruction time for ASI–DROP was
140.3 seconds, which is more than twice as fast as that for EKN–DROP (361.1
seconds) and over five times faster than the sequential implementation of DROP.

For both forms of asynchrony, we see diminishing returns as w increases. It might
even be more advantageous to choose w smaller rather than larger. This is seen
by comparing the ASI–DROP algorithm performance when w = 8 and w = 10
in Table 1. However, for sufficiently small w > 1 we still see notable performance
improvements over the existing synchronous sequential case w = 1. Plots of the
averages of residuals for the ASI–DROP and EKN–DROP schemes are provided in
Figures 4, 5, and 6. Figure 5(a) reveals that, when the step sizes are small enough,
roughly the same number of iterations is needed to obtain convergence of the ASI–
DROP algorithm as w increases, up to w = 8. Figure 5(b) shows that the amount
of computation time decreases as w increases, up to w = 8, for the ASI–DROP
algorithm. For the EKN–DROP algorithm, Figure 5(c) shows more iterations are
needed to obtain convergence; however, even with the larger number of iterations,
Figure 5(d) shows speedup is still obtained for w > 1. Figure 6 demonstrates
the behavior of the ASI–DROP algorithm when the step sizes increase to nearly
the maximal size that still yields convergence. There we see a wide plot, which
demonstrates the variance among arrival times of the iterates generated by the
ASI–DROP algorithm. Note also that the iterates do not necessarily approach
the solution monotonically. In Figure 7, we see sample reconstructions that reveal
each image high equality. In Figure 4, we see the primary comparison plot between
the ASI–DROP and EKN–DROP methods of asynchrony, which shows increasing
speedup as w increases for the ASI–DROP algorithm. In summary, compared to
the sequential application of block operators, both versions of asynchrony display
speedup while the ASI–DROP approach is faster when it converges.

7.3 Discussion

From the computational example, we learn that much larger step sizes may pos-
sibly be used in practice, with promise, than the bound given in Theorem 1. If
the updates are uniformly random and independent of the distribution of delays,
then the results of ARock [35, Table 2] can be used to deduce larger step sizes
yield convergence, i.e., the upper bound for step sizes is 1/(1 + 2τ/

√
m), where m

is the number of operators and τ is an upper bound on the delays. However, once
the number of nodes w increases too much, then the step size must be reduced to
maintain convergence. There appears to be an optimal pairing (λ,w) for obtain-
ing the fastest reconstructions. The EKN asynchrony may be advantageous over
a sequential algorithm, but requires an increasing number of iterations as w in-
creases, thereby limiting the speedup. Due to the introduction of inertial terms (c.f.
(14) and Figure 2), we see roughly the same number of iterations may be needed
for the ASI algorithm as w increases, and in some cases fewer iterations are needed.
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Fig. 4: Juxtaposition of averages of residual plots over 30 trials for the ASI–DROP
and EKN–DROP algorithms.

Although there is a speedup for the ASI–DROP algorithm, it is sublinear in our
experiments. Initially, this may seem contradictory since fewer iterations are re-
quired and more processing nodes are used. However, when several nodes produce
outputs during the same time step θ, a queue is formed for the updates to xk

(c.f. the for loop during the iteration of Algorithm 4). This leads to some delays
and node idle time. If the operators are more computationally expensive, then the
chances of simultaneous node outputs at the same time step goes down. Conse-
quently, it may be advantageous to use few costly operators rather than many
computationally cheap operators. Alternatively, one may choose a different pseu-
docode implementation of the ASI algorithm that does not utilize the master/slave
architecture, but instead uses some form of peer to peer network.

8 Conclusion

In this work, we present a KM-type iteration for common fixed point problems
that allows for partial asynchronity, i.e., delays uniformly bounded in the sup
norm by some τ ≥ 0. Convergence of this ASI algorithm is established. This
provides robustness to dropped network transmissions, removes both the need to
synchronize node outputs and to coordinate load-balancing, and reveals a method
for attaining further speedup with block-iterative methods when solving large scale
problems. Moreover, when there is a delay, inertial terms are introduced into the
iteration to accelerate convergence. In some cases, this reduces the number of
iterations needed to converge. Future work may test the ASI algorithm on massive
scale problems, study application of the ASI algorithm to computing architectures
other than the master/slave architecture, and investigate extensions to inconsistent
convex feasibility problems.
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